-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add MultiDense layer Add MultiDense layer improvements Recreate initializer per replica to make sure seed is properly set Add tolerences to test Add multi_dense path in generate_nn Add MultiDropout Replace old dense layer everywhere Remove MultiDropout, not necessary Update developing weights structure Remove MultiDropout once more Fix naming inconsistency wrt parallel-prefactor
- Loading branch information
Showing
9 changed files
with
335 additions
and
45 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
from typing import List | ||
|
||
import tensorflow as tf | ||
from tensorflow.keras.initializers import Initializer | ||
from tensorflow.keras.layers import Dense, Dropout | ||
|
||
|
||
class MultiDense(Dense): | ||
""" | ||
Dense layer for multiple replicas at the same time. | ||
Inputs to this layer may contain multiple replicas, for the later layers. | ||
In this case, the `replica_input` argument should be set to `True`, which is the default. | ||
The input shape in this case is (batch_size, replicas, gridsize, features). | ||
For the first layer, there are no replicas yet, and so the `replica_input` argument | ||
should be set to `False`. | ||
The input shape in this case is (batch_size, gridsize, features). | ||
Weights are initialized using a `replica_seeds` list of seeds, and are identical to the | ||
weights of a list of single dense layers with the same `replica_seeds`. | ||
Example | ||
------- | ||
>>> from tensorflow.keras import Sequential | ||
>>> from tensorflow.keras.layers import Dense | ||
>>> from tensorflow.keras.initializers import GlorotUniform | ||
>>> import tensorflow as tf | ||
>>> replicas = 2 | ||
>>> multi_dense_model = Sequential([ | ||
>>> MultiDense(units=8, replica_seeds=[42, 43], replica_input=False, kernel_initializer=GlorotUniform(seed=0)), | ||
>>> MultiDense(units=4, replica_seeds=[52, 53], kernel_initializer=GlorotUniform(seed=0)), | ||
>>> ]) | ||
>>> single_models = [ | ||
>>> Sequential([ | ||
>>> Dense(units=8, kernel_initializer=GlorotUniform(seed=42 + r)), | ||
>>> Dense(units=4, kernel_initializer=GlorotUniform(seed=52 + r)), | ||
>>> ]) | ||
>>> for r in range(replicas) | ||
>>> ] | ||
>>> gridsize, features = 100, 2 | ||
>>> multi_dense_model.build(input_shape=(None, gridsize, features)) | ||
>>> for single_model in single_models: | ||
>>> single_model.build(input_shape=(None, gridsize, features)) | ||
>>> test_input = tf.random.uniform(shape=(1, gridsize, features)) | ||
>>> multi_dense_output = multi_dense_model(test_input) | ||
>>> single_dense_output = tf.stack([single_model(test_input) for single_model in single_models], axis=1) | ||
>>> tf.reduce_all(tf.equal(multi_dense_output, single_dense_output)) | ||
Parameters | ||
---------- | ||
replica_seeds: List[int] | ||
List of seeds per replica for the kernel initializer. | ||
kernel_initializer: Initializer | ||
Initializer class for the kernel. | ||
replica_input: bool (default: True) | ||
Whether the input already contains multiple replicas. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
replica_seeds: List[int], | ||
kernel_initializer: Initializer, | ||
replica_input: bool = True, | ||
**kwargs | ||
): | ||
super().__init__(**kwargs) | ||
self.replicas = len(replica_seeds) | ||
self.replica_seeds = replica_seeds | ||
self.kernel_initializer = MultiInitializer( | ||
single_initializer=kernel_initializer, replica_seeds=replica_seeds | ||
) | ||
self.bias_initializer = MultiInitializer( | ||
single_initializer=self.bias_initializer, replica_seeds=replica_seeds | ||
) | ||
self.replica_input = replica_input | ||
|
||
def build(self, input_shape): | ||
input_dim = input_shape[-1] | ||
self.kernel = self.add_weight( | ||
name="kernel", | ||
shape=(self.replicas, input_dim, self.units), | ||
initializer=self.kernel_initializer, | ||
regularizer=self.kernel_regularizer, | ||
constraint=self.kernel_constraint, | ||
) | ||
if self.use_bias: | ||
self.bias = self.add_weight( | ||
name="bias", | ||
shape=(self.replicas, 1, self.units), | ||
initializer=self.bias_initializer, | ||
regularizer=self.bias_regularizer, | ||
constraint=self.bias_constraint, | ||
) | ||
else: | ||
self.bias = None | ||
self.input_spec.axes = {-1: input_dim} | ||
self.built = True | ||
|
||
def call(self, inputs): | ||
""" | ||
Compute output of shape (batch_size, replicas, gridsize, units). | ||
For the first layer, (self.replica_input is False), this is equivalent to | ||
applying each replica separately and concatenating along the last axis. | ||
If the input already contains multiple replica outputs, it is equivalent | ||
to applying each replica to its corresponding input. | ||
""" | ||
if inputs.dtype.base_dtype != self._compute_dtype_object.base_dtype: | ||
inputs = tf.cast(inputs, dtype=self._compute_dtype_object) | ||
|
||
input_axes = 'brnf' if self.replica_input else 'bnf' | ||
einrule = input_axes + ',rfg->brng' | ||
outputs = tf.einsum(einrule, inputs, self.kernel) | ||
|
||
# Reshape the output back to the original ndim of the input. | ||
if not tf.executing_eagerly(): | ||
output_shape = self.compute_output_shape(inputs.shape.as_list()) | ||
outputs.set_shape(output_shape) | ||
|
||
if self.use_bias: | ||
outputs = outputs + self.bias | ||
|
||
if self.activation is not None: | ||
outputs = self.activation(outputs) | ||
|
||
return outputs | ||
|
||
def compute_output_shape(self, input_shape): | ||
# Remove the replica axis from the input shape. | ||
if self.replica_input: | ||
input_shape = input_shape[:1] + input_shape[2:] | ||
|
||
output_shape = super().compute_output_shape(input_shape) | ||
|
||
# Add back the replica axis to the output shape. | ||
output_shape = output_shape[:1] + [self.replicas] + output_shape[1:] | ||
|
||
return output_shape | ||
|
||
def get_config(self): | ||
config = super().get_config() | ||
config.update({"replica_input": self.replica_input, "replica_seeds": self.replica_seeds}) | ||
return config | ||
|
||
|
||
class MultiInitializer(Initializer): | ||
""" | ||
Multi replica initializer that exactly replicates a stack of single replica initializers. | ||
Weights are stacked on the first axis, and per replica seeds are added to a base seed of the | ||
given single replica initializer. | ||
Parameters | ||
---------- | ||
single_initializer: Initializer | ||
Initializer class for the kernel. | ||
replica_seeds: List[int] | ||
List of seeds per replica for the kernel initializer. | ||
""" | ||
|
||
def __init__(self, single_initializer: Initializer, replica_seeds: List[int]): | ||
self.initializer_class = type(single_initializer) | ||
self.initializer_config = single_initializer.get_config() | ||
self.base_seed = single_initializer.seed if hasattr(single_initializer, "seed") else None | ||
self.replica_seeds = replica_seeds | ||
|
||
def __call__(self, shape, dtype=None, **kwargs): | ||
shape = shape[1:] # Remove the replica axis from the shape. | ||
per_replica_weights = [] | ||
for replica_seed in self.replica_seeds: | ||
if self.base_seed is not None: | ||
self.initializer_config["seed"] = self.base_seed + replica_seed | ||
single_initializer = self.initializer_class.from_config(self.initializer_config) | ||
|
||
per_replica_weights.append(single_initializer(shape, dtype, **kwargs)) | ||
|
||
return tf.stack(per_replica_weights, axis=0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.