forked from WongKinYiu/yolor
-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e5a2265
commit 8326232
Showing
1 changed file
with
186 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
import argparse | ||
import os | ||
import platform | ||
import shutil | ||
import time | ||
from pathlib import Path | ||
|
||
import cv2 | ||
import torch | ||
import torch.backends.cudnn as cudnn | ||
from numpy import random | ||
|
||
from utils.google_utils import attempt_load | ||
from utils.datasets import LoadStreams, LoadImages | ||
from utils.general import ( | ||
check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, strip_optimizer) | ||
from utils.plots import plot_one_box | ||
from utils.torch_utils import select_device, load_classifier, time_synchronized | ||
|
||
from models.models import * | ||
from utils.datasets import * | ||
from utils.general import * | ||
|
||
def load_classes(path): | ||
# Loads *.names file at 'path' | ||
with open(path, 'r') as f: | ||
names = f.read().split('\n') | ||
return list(filter(None, names)) # filter removes empty strings (such as last line) | ||
|
||
def detect(save_img=False): | ||
out, source, weights, view_img, save_txt, imgsz, cfg, names = \ | ||
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.cfg, opt.names | ||
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt') | ||
|
||
# Initialize | ||
device = select_device(opt.device) | ||
if os.path.exists(out): | ||
shutil.rmtree(out) # delete output folder | ||
os.makedirs(out) # make new output folder | ||
half = device.type != 'cpu' # half precision only supported on CUDA | ||
|
||
# Load model | ||
model = Darknet(cfg, imgsz).cuda() | ||
model.load_state_dict(torch.load(weights[0], map_location=device)['model']) | ||
#model = attempt_load(weights, map_location=device) # load FP32 model | ||
#imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size | ||
model.to(device).eval() | ||
if half: | ||
model.half() # to FP16 | ||
|
||
# Second-stage classifier | ||
classify = False | ||
if classify: | ||
modelc = load_classifier(name='resnet101', n=2) # initialize | ||
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights | ||
modelc.to(device).eval() | ||
|
||
# Set Dataloader | ||
vid_path, vid_writer = None, None | ||
if webcam: | ||
view_img = True | ||
cudnn.benchmark = True # set True to speed up constant image size inference | ||
dataset = LoadStreams(source, img_size=imgsz) | ||
else: | ||
save_img = True | ||
dataset = LoadImages(source, img_size=imgsz, auto_size=64) | ||
|
||
# Get names and colors | ||
names = load_classes(names) | ||
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] | ||
|
||
# Run inference | ||
t0 = time.time() | ||
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img | ||
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once | ||
for path, img, im0s, vid_cap in dataset: | ||
img = torch.from_numpy(img).to(device) | ||
img = img.half() if half else img.float() # uint8 to fp16/32 | ||
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | ||
if img.ndimension() == 3: | ||
img = img.unsqueeze(0) | ||
|
||
# Inference | ||
t1 = time_synchronized() | ||
pred = model(img, augment=opt.augment)[0] | ||
|
||
# Apply NMS | ||
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) | ||
t2 = time_synchronized() | ||
|
||
# Apply Classifier | ||
if classify: | ||
pred = apply_classifier(pred, modelc, img, im0s) | ||
|
||
# Process detections | ||
for i, det in enumerate(pred): # detections per image | ||
if webcam: # batch_size >= 1 | ||
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() | ||
else: | ||
p, s, im0 = path, '', im0s | ||
|
||
save_path = str(Path(out) / Path(p).name) | ||
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '') | ||
s += '%gx%g ' % img.shape[2:] # print string | ||
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | ||
if det is not None and len(det): | ||
# Rescale boxes from img_size to im0 size | ||
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() | ||
|
||
# Print results | ||
for c in det[:, -1].unique(): | ||
n = (det[:, -1] == c).sum() # detections per class | ||
s += '%g %ss, ' % (n, names[int(c)]) # add to string | ||
|
||
# Write results | ||
for *xyxy, conf, cls in det: | ||
if save_txt: # Write to file | ||
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh | ||
with open(txt_path + '.txt', 'a') as f: | ||
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format | ||
|
||
if save_img or view_img: # Add bbox to image | ||
label = '%s %.2f' % (names[int(cls)], conf) | ||
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) | ||
|
||
# Print time (inference + NMS) | ||
print('%sDone. (%.3fs)' % (s, t2 - t1)) | ||
|
||
# Stream results | ||
if view_img: | ||
cv2.imshow(p, im0) | ||
if cv2.waitKey(1) == ord('q'): # q to quit | ||
raise StopIteration | ||
|
||
# Save results (image with detections) | ||
if save_img: | ||
if dataset.mode == 'images': | ||
cv2.imwrite(save_path, im0) | ||
else: | ||
if vid_path != save_path: # new video | ||
vid_path = save_path | ||
if isinstance(vid_writer, cv2.VideoWriter): | ||
vid_writer.release() # release previous video writer | ||
|
||
fourcc = 'mp4v' # output video codec | ||
fps = vid_cap.get(cv2.CAP_PROP_FPS) | ||
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | ||
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | ||
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) | ||
vid_writer.write(im0) | ||
|
||
if save_txt or save_img: | ||
print('Results saved to %s' % Path(out)) | ||
if platform == 'darwin' and not opt.update: # MacOS | ||
os.system('open ' + save_path) | ||
|
||
print('Done. (%.3fs)' % (time.time() - t0)) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--weights', nargs='+', type=str, default='yolor_p6.pt', help='model.pt path(s)') | ||
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam | ||
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder | ||
parser.add_argument('--img-size', type=int, default=1280, help='inference size (pixels)') | ||
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold') | ||
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') | ||
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | ||
parser.add_argument('--view-img', action='store_true', help='display results') | ||
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | ||
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') | ||
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | ||
parser.add_argument('--augment', action='store_true', help='augmented inference') | ||
parser.add_argument('--update', action='store_true', help='update all models') | ||
parser.add_argument('--cfg', type=str, default='cfg/yolor_p6.cfg', help='*.cfg path') | ||
parser.add_argument('--names', type=str, default='data/coco.names', help='*.cfg path') | ||
opt = parser.parse_args() | ||
print(opt) | ||
|
||
with torch.no_grad(): | ||
if opt.update: # update all models (to fix SourceChangeWarning) | ||
for opt.weights in ['']: | ||
detect() | ||
strip_optimizer(opt.weights) | ||
else: | ||
detect() |