Skip to content
forked from mesnilgr/is13

RNN for Spoken Language Understanding

Notifications You must be signed in to change notification settings

MissingShoes/is13

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Note: I don't provide personal support for custom changes in the code. Only for the release. For people just starting, I recommend Treehouse for online-learning.

Investigation of Recurrent Neural Network Architectures and Learning Methods for Spoken Language Understanding

Code for RNN and Spoken Language Understanding

Based on the Interspeech '13 paper:

Grégoire Mesnil, Xiaodong He, Li Deng and Yoshua Bengio - Investigation of Recurrent Neural Network Architectures and Learning Methods for Spoken Language Understanding

We also have a follow-up IEEE paper:

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He, Larry Heck, Gokhan Tur, Dong Yu and Geoffrey Zweig - Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding

Code

This code allows to get state-of-the-art results and a significant improvement (+1% in F1-score) with respect to the results presented in the paper.

In order to reproduce the results, make sure Theano is installed and the repository is in your PYTHONPATH, e.g run the command export PYTHONPATH=/path/where/is13/is:$PYTHONPATH. Then, run the following commands:

git clone [email protected]:mesnilgr/is13.git
python is13/examples/elman-forward.py

For running the Jordan architecture:

python is13/examples/jordan-forward.py

ATIS Data

Download ATIS Dataset here! split 0 split 1 split 2 split 3 split 4

import cPickle
train, test, dicts = cPickle.load(open("atis.pkl"))

dicts is a python dictionnary that contains the mapping from the labels, the name entities (if existing) and the words to indexes used in train and test lists. Refer to this tutorial for more details.

Running the following command can give you an idea of how the data has been preprocessed:

python data/load.py

To download the intent labels, you may be intersted in this notebook.

License

Creative Commons License
Recurrent Neural Network Architectures for Spoken Language Understanding by Grégoire Mesnil is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at https://github.com/mesnilgr/is13.

About

RNN for Spoken Language Understanding

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%