forked from WangYueFt/dcp
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 43671b5
Showing
7 changed files
with
1,322 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
#!/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
|
||
|
||
import os | ||
import sys | ||
import glob | ||
import h5py | ||
import numpy as np | ||
from scipy.spatial.transform import Rotation | ||
from torch.utils.data import Dataset | ||
|
||
|
||
# Part of the code is referred from: https://github.com/charlesq34/pointnet | ||
|
||
def download(): | ||
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) | ||
DATA_DIR = os.path.join(BASE_DIR, 'data') | ||
if not os.path.exists(DATA_DIR): | ||
os.mkdir(DATA_DIR) | ||
if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')): | ||
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip' | ||
zipfile = os.path.basename(www) | ||
os.system('wget %s; unzip %s' % (www, zipfile)) | ||
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR)) | ||
os.system('rm %s' % (zipfile)) | ||
|
||
|
||
def load_data(partition): | ||
download() | ||
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) | ||
DATA_DIR = os.path.join(BASE_DIR, 'data') | ||
all_data = [] | ||
all_label = [] | ||
for h5_name in glob.glob(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048', 'ply_data_%s*.h5' % partition)): | ||
f = h5py.File(h5_name) | ||
data = f['data'][:].astype('float32') | ||
label = f['label'][:].astype('int64') | ||
f.close() | ||
all_data.append(data) | ||
all_label.append(label) | ||
all_data = np.concatenate(all_data, axis=0) | ||
all_label = np.concatenate(all_label, axis=0) | ||
return all_data, all_label | ||
|
||
|
||
def translate_pointcloud(pointcloud): | ||
xyz1 = np.random.uniform(low=2. / 3., high=3. / 2., size=[3]) | ||
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3]) | ||
|
||
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32') | ||
return translated_pointcloud | ||
|
||
|
||
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.05): | ||
N, C = pointcloud.shape | ||
pointcloud += np.clip(sigma * np.random.randn(N, C), -1 * clip, clip) | ||
return pointcloud | ||
|
||
|
||
class ModelNet40(Dataset): | ||
def __init__(self, num_points, partition='train', gaussian_noise=False, unseen=False, factor=4): | ||
self.data, self.label = load_data(partition) | ||
self.num_points = num_points | ||
self.partition = partition | ||
self.gaussian_noise = gaussian_noise | ||
self.unseen = unseen | ||
self.label = self.label.squeeze() | ||
self.factor = factor | ||
if self.unseen: | ||
######## simulate testing on first 20 categories while training on last 20 categories | ||
if self.partition == 'test': | ||
self.data = self.data[self.label>=20] | ||
self.label = self.label[self.label>=20] | ||
elif self.partition == 'train': | ||
self.data = self.data[self.label<20] | ||
self.label = self.label[self.label<20] | ||
|
||
def __getitem__(self, item): | ||
pointcloud = self.data[item][:self.num_points] | ||
if self.gaussian_noise: | ||
pointcloud = jitter_pointcloud(pointcloud) | ||
if self.partition != 'train': | ||
np.random.seed(item) | ||
anglex = np.random.uniform() * np.pi / self.factor | ||
angley = np.random.uniform() * np.pi / self.factor | ||
anglez = np.random.uniform() * np.pi / self.factor | ||
|
||
cosx = np.cos(anglex) | ||
cosy = np.cos(angley) | ||
cosz = np.cos(anglez) | ||
sinx = np.sin(anglex) | ||
siny = np.sin(angley) | ||
sinz = np.sin(anglez) | ||
Rx = np.array([[1, 0, 0], | ||
[0, cosx, -sinx], | ||
[0, sinx, cosx]]) | ||
Ry = np.array([[cosy, 0, siny], | ||
[0, 1, 0], | ||
[-siny, 0, cosy]]) | ||
Rz = np.array([[cosz, -sinz, 0], | ||
[sinz, cosz, 0], | ||
[0, 0, 1]]) | ||
R_ab = Rx.dot(Ry).dot(Rz) | ||
R_ba = R_ab.T | ||
translation_ab = np.array([np.random.uniform(-0.5, 0.5), np.random.uniform(-0.5, 0.5), | ||
np.random.uniform(-0.5, 0.5)]) | ||
translation_ba = -R_ba.T.dot(translation_ab) | ||
|
||
pointcloud1 = pointcloud.T | ||
|
||
rotation_ab = Rotation.from_euler('zyx', [anglez, angley, anglex]) | ||
pointcloud2 = rotation_ab.apply(pointcloud1.T).T + np.expand_dims(translation_ab, axis=1) | ||
|
||
euler_ab = np.asarray([anglez, angley, anglex]) | ||
euler_ba = -euler_ab[::-1] | ||
|
||
pointcloud1 = np.random.permutation(pointcloud1.T).T | ||
pointcloud2 = np.random.permutation(pointcloud2.T).T | ||
|
||
return pointcloud1.astype('float32'), pointcloud2.astype('float32'), R_ab.astype('float32'), \ | ||
translation_ab.astype('float32'), R_ba.astype('float32'), translation_ba.astype('float32'), \ | ||
euler_ab.astype('float32'), euler_ba.astype('float32') | ||
|
||
def __len__(self): | ||
return self.data.shape[0] | ||
|
||
|
||
if __name__ == '__main__': | ||
train = ModelNet40(1024) | ||
test = ModelNet40(1024, 'test') | ||
for data in train: | ||
print(len(data)) | ||
break |
Oops, something went wrong.