Skip to content

Commit

Permalink
first commit
Browse files Browse the repository at this point in the history
  • Loading branch information
WangYueFt committed May 8, 2019
0 parents commit 43671b5
Show file tree
Hide file tree
Showing 7 changed files with 1,322 additions and 0 deletions.
134 changes: 134 additions & 0 deletions data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-


import os
import sys
import glob
import h5py
import numpy as np
from scipy.spatial.transform import Rotation
from torch.utils.data import Dataset


# Part of the code is referred from: https://github.com/charlesq34/pointnet

def download():
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'
zipfile = os.path.basename(www)
os.system('wget %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
os.system('rm %s' % (zipfile))


def load_data(partition):
download()
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(BASE_DIR, 'data')
all_data = []
all_label = []
for h5_name in glob.glob(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048', 'ply_data_%s*.h5' % partition)):
f = h5py.File(h5_name)
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
return all_data, all_label


def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2. / 3., high=3. / 2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])

translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud


def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.05):
N, C = pointcloud.shape
pointcloud += np.clip(sigma * np.random.randn(N, C), -1 * clip, clip)
return pointcloud


class ModelNet40(Dataset):
def __init__(self, num_points, partition='train', gaussian_noise=False, unseen=False, factor=4):
self.data, self.label = load_data(partition)
self.num_points = num_points
self.partition = partition
self.gaussian_noise = gaussian_noise
self.unseen = unseen
self.label = self.label.squeeze()
self.factor = factor
if self.unseen:
######## simulate testing on first 20 categories while training on last 20 categories
if self.partition == 'test':
self.data = self.data[self.label>=20]
self.label = self.label[self.label>=20]
elif self.partition == 'train':
self.data = self.data[self.label<20]
self.label = self.label[self.label<20]

def __getitem__(self, item):
pointcloud = self.data[item][:self.num_points]
if self.gaussian_noise:
pointcloud = jitter_pointcloud(pointcloud)
if self.partition != 'train':
np.random.seed(item)
anglex = np.random.uniform() * np.pi / self.factor
angley = np.random.uniform() * np.pi / self.factor
anglez = np.random.uniform() * np.pi / self.factor

cosx = np.cos(anglex)
cosy = np.cos(angley)
cosz = np.cos(anglez)
sinx = np.sin(anglex)
siny = np.sin(angley)
sinz = np.sin(anglez)
Rx = np.array([[1, 0, 0],
[0, cosx, -sinx],
[0, sinx, cosx]])
Ry = np.array([[cosy, 0, siny],
[0, 1, 0],
[-siny, 0, cosy]])
Rz = np.array([[cosz, -sinz, 0],
[sinz, cosz, 0],
[0, 0, 1]])
R_ab = Rx.dot(Ry).dot(Rz)
R_ba = R_ab.T
translation_ab = np.array([np.random.uniform(-0.5, 0.5), np.random.uniform(-0.5, 0.5),
np.random.uniform(-0.5, 0.5)])
translation_ba = -R_ba.T.dot(translation_ab)

pointcloud1 = pointcloud.T

rotation_ab = Rotation.from_euler('zyx', [anglez, angley, anglex])
pointcloud2 = rotation_ab.apply(pointcloud1.T).T + np.expand_dims(translation_ab, axis=1)

euler_ab = np.asarray([anglez, angley, anglex])
euler_ba = -euler_ab[::-1]

pointcloud1 = np.random.permutation(pointcloud1.T).T
pointcloud2 = np.random.permutation(pointcloud2.T).T

return pointcloud1.astype('float32'), pointcloud2.astype('float32'), R_ab.astype('float32'), \
translation_ab.astype('float32'), R_ba.astype('float32'), translation_ba.astype('float32'), \
euler_ab.astype('float32'), euler_ba.astype('float32')

def __len__(self):
return self.data.shape[0]


if __name__ == '__main__':
train = ModelNet40(1024)
test = ModelNet40(1024, 'test')
for data in train:
print(len(data))
break
Loading

0 comments on commit 43671b5

Please sign in to comment.