Skip to content

Under this problem setup, the goal is to leverage existing configuration data to make the overall optimization process as efficient as possible.

Notifications You must be signed in to change notification settings

MarcSpeckmann/Meta-Learning-Using-Prior-Data-to-Warmstart-Optimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AutoML lecture 2023 (Freiburg & Hannover)

Final Project

Choice: Meta-Learning - Using prior data to warmstart optimization

This is our team's approach at finding a combination of search algorithm and multi-fidelity scheduler that performs well on the dataset deepweeds.

The search algorithm is a Bayesian Optimizer that employs a random forest regressor as a surrogate model. This surrogate model is warmstarted on objective function evaluations that were supplied.

The scheduler employs a prediction and grace period strategy to create unique adaptive fidelity behavior.

Installation

Download the Repository

git clone https://github.com/MarcSpeckmann/Meta-Learning-Using-Prior-Data-to-Warmstart-Optimization.git

First you need to install miniconda.

Make sure there is no environment that is already named "automl"

Subsequently, run these commands:

make install

Activate the environment

conda activate automl

You may want to adjust the settings for how many concurrent trials to run and how many CPUs and GPUs to use per trial. These settings are found starting at line 281 in main.py

Our test system was able to handle up to about 12 concurrent trials, with fractional resource allocations.

Run the main experiment file

python main.py

Experiments

For reproducing the experiments detailed on the poster run the specific experiment_<searcher>_<scheduler>_<1,2,3>.py

The experiments were carried out on a computer with the following resources:

  • AMD EPYC 7543 32-Core Processor (But only using 4 cores, 4vCPU)
  • NVIDIA A100-SXM4-40GB
  • 528 GB RAM

Results

The test set accuracy will automatically be displayed after finishing the set runtime.

About

Under this problem setup, the goal is to leverage existing configuration data to make the overall optimization process as efficient as possible.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •