Skip to content

MLSpeech/FormantsTracker

Repository files navigation

Formant Estimation and Tracking using Probabilistic Heat-Maps

Yosi Shrem ([email protected]),
Felix Kreuk,
Joseph Keshet ([email protected]).

FormantsTracker is a software package for Formant Tracking and Estiamtion using deep learning.

We propose a new modeling for measuring the formants' frequencies using probabilistic heat-maps rather than traditional regression. This technique allows for flexibility in the predictions to support both in-distribution and out-of-distribution (OOD) samples with greater precision.

The paper was present at Interspeech 2022 - Formant Estimation and Tracking using Probabilistic Heat-Maps. If you find our work useful please cite :

@article{shrem2022formant,
  title={Formant Estimation and Tracking using Probabilistic Heat-Maps},
  author={Shrem, Yosi and Kreuk, Felix and Keshet, Joseph},
  journal={arXiv preprint arXiv:2206.11632},
  year={2022}
}

Installation instructions:

  1. First, create a conda virtual environment and activate it:
conda create -n FormantsTracker python=3.9 -y
conda activate FormantsTracker
  1. Then, clone this repository and install dependencies with:
git clone https://github.com/MLSpeech/FormantsTracker.git
cd FormantsTracker
pip install -r requirements.txt

How to use:

You can either set the paths for the run (opt1) or use the default values (opt2). The generated predictions are for every 10ms frame.

Option 1 :

  • Provide the path for test_dir and predictions_dir as arguments. For example:
    python main.py test_dir=<data_dir_path> predictions_dir=<predictions_dir_path>
    
  • Note: You can also change the default values at ./conf/config.yaml.

Option 2 :

  • Place your .wav files in the ./test_dir/ directory.
  • Then, run :
    python main.py
    
  • The predictions will be at ./predictions directory.
  • Note: You can also place directories that contain the .wav files, there is no need to re-arrange your data. For example:
      ./data
            └───dir1
            │   │   1.wav
            │   │   2.wav
            │   │   3.wav
            │               │   
            └───dir2
                │   1.wav
                │   2.wav
                │   3.wav
    

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages