-
-
Notifications
You must be signed in to change notification settings - Fork 1
Functions
The Functions Arithmetic Provider builds upon the foundation of the Basic Arithmetic Provider, enhancing the capabilities of Obsidian Solve.
This advanced set of mathematical functions allows you to perform more complex calculations and manipulations, all seamlessly integrated into your note-taking experience.
Each function in this provider extends the range of mathematical operations you can perform within Obsidian Solve. From trigonometric functions to logarithmic operations, these functions offer a versatile toolkit for your mathematical needs.
Additionally, here's a quick example showcasing the integration of functions into the Basic Provider:
// Example
100 + 20 - max(10, 20, 30)
In this example, the expression 100 + 20 - max(10, 20, 30)
evaluates to 90
. This demonstrates how you can seamlessly integrate advanced mathematical functions into your calculations within Obsidian Solve.
Explore the list below to quickly navigate to the specific functions you're interested in:
- degToRad Function
- radToDeg Function
- sinh Function
- sin Function
- abs Function
- acosh Function
- acos Function
- asinh Function
- asin Function
- atan2 Function
- atanh Function
- atan Function
- cbrt Function
- ceil Function
- clz32 Function
- cosh Function
- cos Function
- expm1 Function
- exp Function
- floor Function
- fround Function
- hypot Function
- imul Function
- log10 Function
- log1p Function
- log2 Function
- log Function
- max Function
- min Function
- pow Function
- random Function
- round Function
- sign Function
- sqrt Function
- tanh Function
- tan Function
- trunc Function
The degToRad
function converts degrees to radians.
// Example
degToRad(45)
In this example, degToRad(45)
converts 45
degrees to radians, resulting in approximately 0.7854
radians.
The radToDeg
function converts radians to degrees.
// Example
radToDeg(1.5708)
In this example, radToDeg(1.5708)
converts 1.5708
radians to degrees, resulting in approximately 90
degrees.
The sinh
function calculates the hyperbolic sine of a number.
// Example
sinh(2)
In this example, sinh(2)
computes the hyperbolic sine of 2
, resulting in approximately 3.62686
.
The sin
function computes the sine of a number.
// Example
sin(degToRad(30))
In this example, sin(degToRad(30))
calculates the sine of 30
degrees, which is 0.5
.
The abs
function returns the absolute value of a number.
// Example
abs(-5)
In this example, abs(-5)
yields 5
, the absolute value of -5
.
The acosh
function calculates the inverse hyperbolic cosine of a number.
// Example
acosh(1.5)
In this example, acosh(1.5)
computes the inverse hyperbolic cosine of 1.5
, resulting in approximately 0.9624
.
The acos
function calculates the arccosine (inverse cosine) of a number.
// Example
acos(0.5)
In this example, acos(0.5)
computes the arccosine of 0.5
, which is approximately 1.0472
radians or 60
degrees.
The asinh
function calculates the inverse hyperbolic sine of a number.
// Example
asinh(2)
In this example, asinh(2)
computes the inverse hyperbolic sine of 2
, resulting in approximately 1.4436
.
The asin
function calculates the arcsine (inverse sine) of a number.
// Example
asin(0.5)
In this example, asin(0.5)
computes the arcsine of 0.5
, which is approximately 0.5236
radians or 30
degrees.
The atan2
function calculates the arctangent of the quotient of its arguments.
// Example
atan2(1, 1)
In this example, atan2(1, 1)
calculates the arctangent of the quotient 1/1
, resulting in approximately 0.7854
radians or 45
degrees.
The atanh
function calculates the inverse hyperbolic tangent of a number.
// Example
atanh(0.5)
In this example, atanh(0.5)
computes the inverse hyperbolic tangent of 0.5
, resulting in approximately 0.5493
.
The atan
function calculates the arctangent (inverse tangent) of a number.
// Example
atan(1)
In this example, atan(1)
computes the arctangent of 1
, resulting in approximately 0.7854
radians or 45
degrees.
The cbrt
function calculates the cube root of a number.
// Example
cbrt(27)
In this example, cbrt(27)
calculates the cube root of 27
, resulting in 3
.
The ceil
function rounds a number up to the nearest integer.
// Example
ceil(4.2)
In this example, ceil(4.2)
rounds up to 5
.
The clz32
function counts the number of leading zeros in the 32-bit binary representation of a number.
// Example
clz32(1)
In this example, clz32(1)
counts the leading zeros in the binary representation of 1
, which is 31
.
The cosh
function calculates the hyperbolic cosine of a number.
// Example
cosh(2)
In this example, cosh(2)
computes the hyperbolic cosine of 2
, resulting in approximately 3.7622
.
The cos
function calculates the cosine of a number.
// Example
cos(degToRad
(60))
In this example, cos(degToRad(60))
calculates the cosine of 60
degrees, which is 0.5
.
The expm1
function calculates the exponential minus 1 of a number.
// Example
expm1(1)
In this example, expm1(1)
calculates e^1 - 1
, resulting in approximately 1.7182
.
The exp
function calculates the exponential of a number.
// Example
exp(2)
In this example, exp(2)
computes e^2
, resulting in approximately 7.3891
.
The floor
function rounds a number down to the nearest integer.
// Example
floor(4.8)
In this example, floor(4.8)
rounds down to 4
.
The fround
function rounds a number to the nearest single-precision float point value.
// Example
fround(1.234567)
In this example, fround(1.234567)
rounds to the nearest single-precision float point value.
The hypot
function calculates the square root of the sum of squares of its arguments.
// Example
hypot(3, 4)
In this example, hypot(3, 4)
calculates the square root of 3^2 + 4^2
, resulting in 5
.
The imul
function performs 32-bit integer multiplication.
// Example
imul(5, 6)
In this example, imul(5, 6)
performs 32-bit integer multiplication, resulting in 30
.
The log10
function calculates the base 10 logarithm of a number.
// Example
log10(100)
In this example, log10(100)
computes the base 10 logarithm of 100
, resulting in 2
.
The log1p
function calculates the natural logarithm of 1 + x
.
// Example
log1p(2)
In this example, log1p(2)
calculates the natural logarithm of 1 + 2
, resulting in approximately 1.0986
.
The log2
function calculates the base 2 logarithm of a number.
// Example
log2(8)
In this example, log2(8)
computes the base 2 logarithm of 8
, resulting in 3
.
The log
function calculates the natural logarithm of a number.
// Example
log(Math.E)
In this example, log(Math.E)
calculates the natural logarithm of e
, resulting in 1
.
The max
function returns the maximum value among its arguments.
// Example
max(5, 10, 2)
In this example, max(5, 10, 2)
returns 10
, the maximum value among the arguments.
The min
function returns the minimum value among its arguments.
// Example
min(5, 10, 2)
In this example, min(5, 10, 2)
returns 2
, the minimum value among the arguments.
The pow
function raises a number to a specified power.
// Example
pow(2, 3)
In this example, pow(2, 3)
raises 2
to the power of 3
, resulting in 8
.
The random
function generates a random floating-point number between 0 (inclusive) and 1 (exclusive).
// Example
random()
In this example, random()
generates a random floating-point number.
The round
function rounds a number to the nearest integer.
// Example
round(4.6)
In this example, round(4.6)
rounds to 5
.
The sign
function returns the sign of a number.
// Example
sign(-7)
In this example, sign(-7)
returns -1
, indicating a negative value.
The sqrt
function calculates the square root of a number.
// Example
sqrt(25)
In this example, sqrt(25)
calculates the square root of 25
, resulting in 5
.
The tanh
function calculates the hyperbolic tangent of a number.
// Example
tanh(1)
In this example, tanh(1)
computes the hyperbolic tangent of 1
, resulting in approximately 0.7616
.
The tan
function calculates the tangent of a number.
// Example
tan(degToRad(45))
In this example, tan(degToRad(45))
calculates the tangent of 45
degrees, which is 1
.
The trunc
function removes the decimal part of a number, leaving the integer part.
// Example
trunc(4.9)
In this example, trunc(4.9)
truncates to 4
.