-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfgsm.py
157 lines (130 loc) · 6.36 KB
/
fgsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
from torchvision import datasets, transforms
from network import FcNet, ConvNet, DropNet, GoogleNet
# Training phase
def train(args, model, device, train_loader, optimizer):
model.train()
# cross entropy loss
criterion = nn.CrossEntropyLoss()
for epoch in range(1, args.epochs + 1):
for batch_idx, (image, target) in enumerate(train_loader):
image, target = image.to(device), target.to(device)
optimizer.zero_grad()
output = model(image)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(image), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# Save the model checkpoint
if args.save_model:
torch.save(model.state_dict(), 'model/model-{}.ckpt'.format(epoch))
# Test phase
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
adv_correct = 0
misclassified = 0
criterion = nn.CrossEntropyLoss()
for images, targets in test_loader:
images = Variable(images.to(device), requires_grad=True)
targets = Variable(targets.to(device))
outputs = model(images)
loss = criterion(outputs, targets)
test_loss += loss
loss.backward()
# Generate perturbation
grad_j = torch.sign(images.grad.data)
adv_images = torch.clamp(images.data + args.epsilon * grad_j, 0, 1)
adv_outputs = model(Variable(adv_images))
_, preds = torch.max(outputs.data, 1)
_, adv_preds = torch.max(adv_outputs.data, 1)
correct += (preds == targets).sum().item()
adv_correct += (adv_preds == targets).sum().item()
misclassified += (preds != adv_preds).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f})\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
print('\nAdversarial Test: Accuracy: {}/{} ({:.0f})\n'.format(
adv_correct, len(test_loader.dataset),
100. * adv_correct / len(test_loader.dataset)))
print('\nmisclassified examples : {}/ {}\n'.format(
misclassified, len(test_loader.dataset)))
def main():
parser = argparse.ArgumentParser(description='PyTorch FGSM')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=5, metavar='N',
help='number of epochs to train (default: 5)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.001)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--log-interval', type=int, default=640, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--epsilon', type=float, default=0.25,
help='epsilon(perturbation) of adversarial attack')
parser.add_argument('--dataset-normalize', action='store_true' , default=False,
help='input whether normalize or not (default: False)')
parser.add_argument('--network', type=str, default='fc',
help='input Network type (Selected: fc, conv, drop, googlenet / default: \'fc\')')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--dataset', type=str, default='mnist',
help='choose dataset : mnist or cifar')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
transformation = transforms.ToTensor()
# Dataset normalize
if args.dataset_normalize:
transformation = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))])
# dataset
if args.dataset == 'cifar': # cifar10
train_dataset = datasets.CIFAR10('../data', train=True, download=True,
transform=transformation)
test_dataset = datasets.CIFAR10('../data', train=False, download=True,
transform=transformation)
else: # mnist(default)
train_dataset = datasets.MNIST('../data', train=True, download=True,
transform=transformation)
test_dataset = datasets.MNIST('../data', train=False, download=True,
transform=transformation)
# MNIST dataset
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.test_batch_size,
shuffle=True)
# Network Type
if args.network == 'conv':
model = ConvNet().to(device)
elif args.network == 'drop':
model = DropNet().to(device)
elif args.network == 'googlenet' or args.dataset == 'cifar':
model = GoogleNet().to(device)
elif args.network == 'fc': # default
model = FcNet().to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
train(args, model, device, train_loader, optimizer)
test(args, model, device, test_loader)
if __name__ == '__main__':
main()