PsycheSense leverages cutting-edge technology to analyze social media posts, detecting early signs of mental health issues and providing valuable insights. By harnessing the power of LlamaIndex for semantic analysis, the application can understand and interpret complex patterns and behaviors in online interactions. It seamlessly integrates with various social media platforms' APIs to collect real-time data, ensuring comprehensive and up-to-date monitoring.
The core functionality revolves around sophisticated natural language processing algorithms that assess the emotional and psychological state reflected in users' posts. By doing so, it identifies potential indicators of mental health challenges, such as depression, anxiety, or suicidal tendencies. The insights generated from this analysis are designed to support individuals by offering timely recommendations and resources, helping them seek appropriate help and interventions.
Moreover, the application maintains a user-centric approach by implementing privacy-preserving techniques to ensure that personal data is protected while still delivering meaningful and actionable information. This tool not only aids individuals in their mental health journey but also provides healthcare professionals with data-driven insights to enhance their diagnostic and treatment processes.
In summary, this application stands as a comprehensive solution for mental health monitoring and support, utilizing advanced AI and semantic analysis to bridge the gap between social media activity and mental health awareness.
- Collects social media data from platforms like Twitter, Reddit, and others.
- Preprocesses and embeds the data using LlamaIndex.
- Analyzes the data for signs of mental health issues.
- Provides insights and recommendations based on the analysis.
- Python 3.8+
- Node.js (for deploying with Vercel)
- Social media API keys (Twitter, Reddit, Facebook, Instagram, YouTube)
-
Clone the repository:
git clone https://github.com/yourusername/mental-health-app.git cd mental-health-app
-
Install Python dependencies:
pip install -r requirements.txt
-
Set up environment variables:
Create a
.env
file in the root directory and add your API keys:TWITTER_CONSUMER_KEY=your_consumer_key TWITTER_CONSUMER_SECRET=your_consumer_secret TWITTER_ACCESS_TOKEN=your_access_token TWITTER_ACCESS_TOKEN_SECRET=your_access_token_secret REDDIT_CLIENT_ID=your_client_id REDDIT_CLIENT_SECRET=your_client_secret REDDIT_USER_AGENT=your_user_agent FACEBOOK_ACCESS_TOKEN=your_access_token INSTAGRAM_ACCESS_TOKEN=your_access_token INSTAGRAM_USER_ID=your_user_id YOUTUBE_API_KEY=your_api_key
-
Set up the backend server:
python app.py
-
Initialize a new Next.js project:
npx create-next-app frontend cd frontend
-
Create API endpoints in Next.js:
Add the following files:
pages/api/fetch_data.js
import fetch from 'node-fetch'; export default async function handler(req, res) { const data = [ { content: "I am feeling very stressed and anxious lately." }, { content: "Life has been really hard these days." }, // Add more posts as needed ]; res.status(200).json(data); }
pages/api/analyze_mental_health.js
import { preprocess_data, generate_embeddings, analyze_mental_health } from '../../path_to_your_scripts'; export default async function handler(req, res) { const data = req.body; const preprocessed_data = preprocess_data(data); const index = generate_embeddings(preprocessed_data); const analysis_results = analyze_mental_health(index, "signs of mental health issues"); res.status(200).json(analysis_results); }
-
Create frontend pages:
pages/index.js
import Link from 'next/link'; export default function Home() { return ( <div className="container"> <h1>Welcome to the Mental Health App</h1> <p>Your well-being is our priority.</p> <Link href="/data-input"><button>Get Started</button></Link> <style jsx>{` .container { display: flex; flex-direction: column; align-items: center; justify-content: center; height: 100vh; text-align: center; background-color: #f0f4f8; } h1 { color: #333; } button { padding: 10px 20px; background-color: #0070f3; color: #fff; border: none; border-radius: 5px; cursor: pointer; } `}</style> </div> ); }
pages/data-input.js
import { useState } from 'react'; import Router from 'next/router'; export default function DataInput() { const [data, setData] = useState(''); const handleSubmit = async () => { const response = await fetch('/api/analyze_mental_health', { method: 'POST', headers: { 'Content-Type': 'application/json', }, body: JSON.stringify({ content: data }), }); const result = await response.json(); Router.push({ pathname: '/results', query: { analysis: JSON.stringify(result) }, }); }; return ( <div className="container"> <h1>Input Your Data</h1> <textarea value={data} onChange={(e) => setData(e.target.value)} placeholder="Enter your recent social media posts or thoughts here..." ></textarea> <button onClick={handleSubmit}>Analyze</button> <style jsx>{` .container { display: flex; flex-direction: column; align-items: center; justify-content: center; height: 100vh; text-align: center; background-color: #f0f4f8; } textarea { width: 80%; height: 200px; padding: 10px; border: 1px solid #ccc; border-radius: 5px; margin-bottom: 20px; } button { padding: 10px 20px; background-color: #0070f3; color: #fff; border: none; border-radius: 5px; cursor: pointer; } `}</style> </div> ); }
pages/results.js
import { useRouter } from 'next/router'; export default function Results() { const router = useRouter(); const { analysis } = router.query; const parsedAnalysis = analysis ? JSON.parse(analysis) : {}; return ( <div className="container"> <h1>Analysis Results</h1> <pre>{JSON.stringify(parsedAnalysis, null, 2)}</pre> <button onClick={() => router.push('/')}>Go Back</button> <style jsx>{` .container { display: flex; flex-direction: column; align-items: center; justify-content: center; height: 100vh; text-align: center; background-color: #f0f4f8; } pre { text-align: left; background: #fff; padding: 20px; border-radius: 5px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); } button { padding: 10px 20px; background-color: #0070f3; color: #fff; border: none; border-radius: 5px; cursor: pointer; margin-top: 20px; } `}</style> </div> ); }
-
Deploy the Backend:
You can use any cloud provider like AWS, Google Cloud, or Azure. For simplicity, here's an example using AWS Elastic Beanstalk:
eb init -p python-3.8 mental-health-app eb create mental-health-app-env
-
Deploy the Frontend with Vercel:
vercel deploy
-
Start the backend server:
python app.py
-
Navigate to your Vercel deployment URL to use the frontend interface.
- Ensure HTTPS is used for secure communication.
- Implement authentication and authorization.
- Comply with data protection regulations (e.g., GDPR).
Contributions are welcome! Please submit a pull request or open an issue to discuss any changes.
This project is licensed under the MIT License.