-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRaw.py~
293 lines (259 loc) · 6.79 KB
/
Raw.py~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# ___ __ _ ___ _____
# / _ | ___ ___ _/ /_ _____ (_)__ ___ / _/ / _/ /_ _____ _______ ___ _______ ___ _______
# / __ |/ _ \/ _ `/ / // (_-</ (_-< / _ \/ _/ / _/ / // / _ \/ __/ -_|_-</ __/ -_) _ \/ __/ -_)
#/_/ |_/_//_/\_,_/_/\_, /___/_/___/ \___/_/ /_//_/\_,_/\___/_/ \__/___/\__/\__/_//_/\__/\__/
# /___/__ __
# / _ \___ _/ /____ _
# / // / _ `/ __/ _ `/
# /____/\_,_/\__/\_,_/ Author :: Kevin Nelson :: [email protected]
from pylab import *
import sys
import os
import csv
import numpy
def readFile(n,delim):
fileIN=n
Data={}
with open(fileIN) as csvfile:
tableMain=csv.reader(csvfile,delimiter=delim)
k=0
for row in tableMain:
Data[k]=row
k+=1
return(Data)
#data = readFile(sys.argv[1])
def RawParse(data):
starts=[]
ends=[]
names=[]
found=False
for k in range(0,len(data)):
if(len(data[k])==0):
if(found):
ends.append(k)
found=False
pass
else:
if(found==False):
found=True
names.append(data[k][0])
starts.append(k+1)
if(len(ends)<len(starts)):
ends.append(k)
ret={}
print 'Making Data With'
print names
print 'starts'
print starts
print 'ends'
print ends
if(len(ends)==len(starts) and len(starts)==len(names)):
for k in range(0,len(names)):
ret[names[k]]={}
k3=0
for k2 in range(starts[k],ends[k]):
ret[names[k]][k3]=data[k2]
k3+=1
return(ret,names)
def DictPrt2d(sdmB,delim): # This is usful for printing 2 dimenstion dictionaries {{}} -> csv files.
op=''
First=True
for k in sdmB:
if First:
First= False
else:
if(op[len(op)-1]==delim):op=op[0:len(op)-1]+'\n'
for k2 in sdmB[k]: # Patched for {{}} or {[]}
try:
op += str(sdmB[k][k2]) #Dictionary Behavior
except(TypeError):
op+=str(k2) #List Behavior
op += delim
if(op[len(op)-1]==','):op=op[0:len(op)-1]+'\n'
op+='\n'
return(op)
def RoxPlot(Data,name):
t=Data.keys()
t2=Data[t[1]].keys()
#print DictPrt2d(Data[t[1]],'\t')
#print Data[t[1]].keys()
#print t
#print t2
temp=Data[t[1]]
#print(DictPrt2d(temp,'\t'))
t = temp[0][1:-1]
#print t
s = temp[1][1:]
#print s
#print str(len(s))+' : '+str(len(t))
close()
plot(t, s)
xlabel(temp[0][0])
ylabel(temp[1][0])
title('Rox :'+name)
grid(True)
formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
ax = subplot(111)
ax.yaxis.set_major_formatter(formatter)
ax.xaxis.set_major_formatter(formatter)
savefig('Rox :'+name+'.png')
#show()
pass
def FamMgbPlot(Data,name):
t=Data.keys()
t2=Data[t[1]].keys()
#print DictPrt2d(Data[t[1]],'\t')
#print Data[t[1]].keys()
#print t
#print t2
temp=Data[t[1]]
#print(DictPrt2d(temp,'\t'))
t = temp[0][1:-1]
#print t
s = temp[2][1:]
#print s
#print str(len(s))+' : '+str(len(t))
close()
plot(t, s)
xlabel(temp[0][0])
ylabel(temp[2][0])
title('FAM-MGB :'+name)
grid(True)
formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
ax = subplot(111)
ax.yaxis.set_major_formatter(formatter)
ax.xaxis.set_major_formatter(formatter)
savefig('FAM-MGB :'+name+'.png')
pass
def qpcrPlot(Data,f,t,s,g):#Data container, file name, sample name, gene name
T = Data[f][t][s][g][1:-1]#Fval
S = range(1,len(T)+1,1) #Cycle Number
Fmax=max(T)
k2=0
for k in T:
T[k2] = int(k)
k2+=1
print T
print ' len: ' + str(len(T))
print S
print ' len: ' + str(len(S))
#print s
#print str(len(s))+' : '+str(len(t))
close()
plot(S,T)
xlabel('cycle')
ylabel('fluorescence')
print type(f)
print type(t)
print type(s)
print type(g)
title(t+':'+s+':'+g)
grid(True)
formatter = matplotlib.ticker.ScalarFormatter(useOffset=False)
ax = subplot(111)
ax.yaxis.set_major_formatter(formatter)
ax.xaxis.set_major_formatter(formatter)
savefig(t+'_'+s+'_'+g+'.png')
pass
def RoxPlots():
files = [f for f in os.listdir('.') if os.path.isfile(f)]
for f in files:
if(f[-3:]=='csv'):
Data , names = RawParse(readFile(f,','))
if not os.path.exists('OutPut'):# Check if the folder 'OutPut' exists
os.makedirs('OutPut') # If not make it
os.chdir('OutPut')
RoxPlot(Data,f[:-4])
os.chdir('..')
pass
def FamMgbPlots():
files = [f for f in os.listdir('.') if os.path.isfile(f)]
for f in files:
if(f[-3:]=='csv'):
Data , names = RawParse(readFile(f,','))
if not os.path.exists('OutPut'):
os.makedirs('OutPut')
os.chdir('OutPut')
FamMgbPlot(Data,f[:-4])
os.chdir('..')
pass
def GetAssayResults():
keyErrorCount=0
ret={}
ret2={}
files = [f for f in os.listdir('.') if os.path.isfile(f)]
for f in files:
if(f[-3:]=='csv'):
ret[f]={}
Data , names = RawParse(readFile(f,','))
ret2[f]=Data
keyNames={}
for k in Data['Experiment Information']:
#print k
keyNames[Data['Experiment Information'][k][0]]=Data['Experiment Information'][k][1:]
if not os.path.exists('OutPut'):# Check if the folder 'OutPut' exists
os.makedirs('OutPut') # If not make it
os.chdir('OutPut')
for k in Data:
if(k[-7:]=='FAM-MGB'):
ret[f][k]={}
for k2 in Data[k]:
try:
works=True
temp =[keyNames[Data[k][k2][0]][0],keyNames[Data[k][k2][0]][3],Data[k][k2]]
except(KeyError):
works=False
keyErrorCount+=1
#print '!--#KeyError#--!'
if works:
if((keyNames[Data[k][k2][0]][0] in ret[f][k].keys())==False):
ret[f][k][keyNames[Data[k][k2][0]][0]]={}
ret[f][k][keyNames[Data[k][k2][0]][0]][keyNames[Data[k][k2][0]][3]]=Data[k][k2]
os.chdir('..')
#print 'keyErrorCount='+str(keyErrorCount)
return(ret,ret2)
def scf(Data,f,s,g):#Data container, file name, sample name, gene name
d = Data[f]['Raw Data for Probe FAM-MGB'][s][g][1:-1]#Fval
k2=0
for k in d:
d[k2]=float(k)
k2+=1
print Data[f]['Bkgd Data for Probe FAM-MGB'][s].keys()
Bkgd = Data[f]['Bkgd Data for Probe FAM-MGB'][s][g][1:-1]
k2=0
for k in Bkgd:
Bkgd[k2]=float(k)
k2+=1
fMax= float(max(d))
k2=1
for k in d:
if(k>=(fMax/2)):
break
k2+=1
if(d[k2]-d[k2-1])!=0.:
c = (k2 - 1)+((fMax/2)-d[k2-1])/(d[k2]-d[k2-1])
else:
return(0)
b = d[k2]-d[k2-1]
return(fMax/(1+numpy.e**(c/b)))
print('imports complete')
#print len(Data)
#for k in Data:
# print k
# print len(Data[k])
# print(len(Data[k][Data[k].keys()[0]]))
RoxPlots()
FamMgbPlots()
GetAssayResults()
Data , WholeData = GetAssayResults()
print Data.keys()
for k in Data:
print Data[k].keys()
if not os.path.exists('OutPut'):
os.makedirs('OutPut')
os.chdir('OutPut')
for k in Data:
#print Data[k]['Bkgd Data for Probe FAM-MGB']
for k3 in Data[k]['Raw Data for Probe FAM-MGB']:
for k4 in Data[k]['Raw Data for Probe FAM-MGB'][k3]:
print(scf(Data,k,k3,k4))