Skip to content

Khoo395/Week-4-Assignment-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Week-4-Assignment-

The dataset includes the following files:

  • 'README.txt'

  • 'CodeBook.txt': Shows information about the variables used on the feature vector.

  • 'Cleaned_data.txt': Shows Cleaned data.

  • 'run_analysis.R': The R script that performs data tidying from raw data

Cleaning Method:

The Cleaning process proceeded with the knowledge of no NA values exist. The Process binds train and test set data together, match grouping variables (Activity & Subject) to rest of the data,
giving variable readeble names, and finally summarizing the means according to the drouping variables.

The data is sourced from: Human Activity Recognition Using Smartphones Dataset Version 1.0

Jorge L. Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneto. Smartlab - Non Linear Complex Systems Laboratory DITEN - Università degli Studi di Genova. Via Opera Pia 11A, I-16145, Genoa, Italy. [email protected] www.smartlab.ws

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain. See 'features_info.txt' for more details.

For each record it is provided:

  • Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration.
  • Triaxial Angular velocity from the gyroscope.
  • A 561-feature vector with time and frequency domain variables.
  • Its activity label.
  • An identifier of the subject who carried out the experiment.

Notes:

  • Features are normalized and bounded within [-1,1].
  • Each feature vector is a row on the text file.

For more information about this dataset contact: [email protected]

License:

Use of this dataset in publications must be acknowledged by referencing the following publication [1]

[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012

This dataset is distributed AS-IS and no responsibility implied or explicit can be addressed to the authors or their institutions for its use or misuse. Any commercial use is prohibited.

Jorge L. Reyes-Ortiz, Alessandro Ghio, Luca Oneto, Davide Anguita. November 2012.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages