Skip to content

A Python package to simplify connections to SQL databases for data analysts. Populate DataFrames with the results of queries directly from .sql files.

License

Notifications You must be signed in to change notification settings

JustinFrizzell/sqlconnect

Repository files navigation

SQLconnect logo

CI-testing PyPI Documentation Status License: MIT Code style: ruff

pip install sqlconnect

SQLconnect is a Python package for data analysts that simplifies connecting to SQL databases like Postgres, Microsoft SQL Server and Oracle. DataFrames can be directly populated from .sql files, and database tables can be directly populated from DataFrames. A configuration file sqlconnect.yaml is used to store database connection details and an environment file sqlconnect.env is used for secure credential management. As a thin wrapper around SQLAlchemy and Pandas, SQLconnect provides convenient access to robust and flexible SQL operations.

Features

  • Turn SQL queries into DataFrames in as few as 3 lines of code

  • Easy management of multiple database connections using a single configuration file

  • Secure storage of database credentials using environment variables

  • Execute SQL queries and commands directly from .sql files or from a string

import sqlconnect as sc

connection = sc.Sqlconnector("My_Database") # Set up a database connection based on sqlconnect.yaml

df = connection.sql_to_df("path/to/sql_query.sql") # Assign the results of a query to a DataFrame

print(df.describe()) # Explore the DataFrame with Pandas

Setup

To use SQLconnect, create a sqlconnect.yaml file in the working directory of your project (or in your home directory) with the following example structure:

connections:
  My_Database:
    dialect: 'mssql'
    dbapi: 'pyodbc'
    host: 'prod-server.example.com'
    database: 'master'
    username: '${MSSQL_USERNAME}' # References MSSQL_USERNAME in sqlconnect.env
    password: '${MSSQL_PASSWORD}' # References MSSQL_PASSWORD in sqlconnect.env
    options: 
      driver: 'ODBC Driver 17 for SQL Server'

  A_Postgres_Database:
    dialect: 'postgresql'
    dbapi: 'psycopg2'
    host: 'dbserver123.company.com'
    database: 'postgres'
    username: '${POSTGRES_USERNAME}'
    password: '${POSTGRES_PASSWORD}'      

Also create a sqlconnect.env file in the working directory of your project (or in your home directory) with the following example structure:

# This file should be kept secure and not checked into version control (add to .gitignore)
# Production Database Credentials
MSSQL_USERNAME=prodUsername
MSSQL_PASSWORD=actualprodPassword
POSTGRES_USERNAME=postgresProdUsername
POSTGRES_PASSWORD=actualprodPassword

Replace the example values with your actual database connection details. The database credentials will be taken from the environment file at runtime.

Documentation & Usage

Full documentation and examples can be found at https://sqlconnect.readthedocs.io/

License

This project is licensed under the MIT License.

About

A Python package to simplify connections to SQL databases for data analysts. Populate DataFrames with the results of queries directly from .sql files.

Resources

License

Stars

Watchers

Forks