-
Notifications
You must be signed in to change notification settings - Fork 49
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
5f8ed3d
commit b18229d
Showing
2 changed files
with
64 additions
and
60 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
# Deprecated | ||
|
||
""" | ||
gabor(size_x,size_y,σ,θ,λ,γ,ψ) -> (k_real,k_complex) | ||
Returns a 2 Dimensional Complex Gabor kernel contained in a tuple where | ||
- `size_x`, `size_y` denote the size of the kernel | ||
- `σ` denotes the standard deviation of the Gaussian envelope | ||
- `θ` represents the orientation of the normal to the parallel stripes of a Gabor function | ||
- `λ` represents the wavelength of the sinusoidal factor | ||
- `γ` is the spatial aspect ratio, and specifies the ellipticity of the support of the Gabor function | ||
- `ψ` is the phase offset | ||
# Citation | ||
N. Petkov and P. Kruizinga, “Computational models of visual neurons specialised in the detection of periodic and aperiodic oriented visual stimuli: bar and grating cells,” Biological Cybernetics, vol. 76, no. 2, pp. 83–96, Feb. 1997. doi.org/10.1007/s004220050323 | ||
""" | ||
function gabor(size_x::Integer, size_y::Integer, σ::Real, θ::Real, λ::Real, γ::Real, ψ::Real) | ||
Base.depwarn("use `Kernel.Gabor` instead.", :gabor) | ||
σx = σ | ||
σy = σ/γ | ||
nstds = 3 | ||
c = cos(θ) | ||
s = sin(θ) | ||
|
||
validate_gabor(σ,λ,γ) | ||
|
||
if(size_x > 0) | ||
xmax = floor(Int64,size_x/2) | ||
else | ||
@warn "The input parameter size_x should be positive. Using size_x = 6 * σx + 1 (Default value)" | ||
xmax = round(Int64,max(abs(nstds*σx*c),abs(nstds*σy*s),1)) | ||
end | ||
|
||
if(size_y > 0) | ||
ymax = floor(Int64,size_y/2) | ||
else | ||
@warn "The input parameter size_y should be positive. Using size_y = 6 * σy + 1 (Default value)" | ||
ymax = round(Int64,max(abs(nstds*σx*s),abs(nstds*σy*c),1)) | ||
end | ||
|
||
xmin = -xmax | ||
ymin = -ymax | ||
|
||
x = [j for i in xmin:xmax,j in ymin:ymax] | ||
y = [i for i in xmin:xmax,j in ymin:ymax] | ||
xr = x*c + y*s | ||
yr = -x*s + y*c | ||
|
||
kernel_real = (exp.(-0.5*(((xr.*xr)/σx^2) + ((yr.*yr)/σy^2))).*cos.(2*(π/λ)*xr .+ ψ)) | ||
kernel_imag = (exp.(-0.5*(((xr.*xr)/σx^2) + ((yr.*yr)/σy^2))).*sin.(2*(π/λ)*xr .+ ψ)) | ||
|
||
kernel = (kernel_real,kernel_imag) | ||
return kernel | ||
end | ||
|
||
function validate_gabor(σ::Real,λ::Real,γ::Real) | ||
if !(σ>0 && λ>0 && γ>0) | ||
throw(ArgumentError("The parameters σ, λ and γ must be positive numbers.")) | ||
end | ||
end |