-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added todays python exersize, and it works
- Loading branch information
1 parent
eace585
commit 9a15888
Showing
1 changed file
with
79 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
import numpy | ||
import rawdata | ||
data = rawdata.raw_scores | ||
|
||
def diff(v1,v2) : | ||
v = numpy.zeros(len(v1)) | ||
for i in range(len(v1)) : | ||
if v1[i]<0 or v2[i]<0: | ||
v[i] = 0 | ||
else : | ||
v[i] = v1[i] - v2[i] | ||
return v | ||
|
||
class Engine(object): | ||
|
||
def set_data(self,data): | ||
self.d = data | ||
|
||
def create_matrix(self): | ||
self.matrix = numpy.zeros( (self.NP, self.NR) ) | ||
for i in range(self.NR) : | ||
referee = self.referees[i] | ||
for j in range(self.NP) : | ||
paper = self.papers[j] | ||
if self.papers[j] not in self.d[referee] : | ||
self.matrix[j,i] = -1 | ||
else : | ||
self.matrix[j,i] = self.d[referee][paper] | ||
|
||
def create_papers(self): | ||
p = [] | ||
for referee in self.d.values(): | ||
for paper in referee.keys() : | ||
p.append(paper) | ||
sp = set(p) | ||
self.papers = list(sp) | ||
self.NP = len(self.papers) | ||
|
||
def create_referees(self): | ||
self.referees = self.d.keys() | ||
self.NR = len(self.referees) | ||
|
||
def similarity(self,r1,r2): | ||
v1 = numpy.array(self.matrix[:,r1]) | ||
v2 = numpy.array(self.matrix[:,r2]) | ||
# print v1 | ||
# print v2 | ||
v = diff(v1,v2) | ||
# print v | ||
return numpy.linalg.norm( v ) | ||
|
||
def pearson(self,r1,r2): | ||
v1 = numpy.array(self.matrix[:,r1]) | ||
v2 = numpy.array(self.matrix[:,r2]) | ||
v1l = [] | ||
v2l = [] | ||
for i in range(self.NP) : | ||
if v1[i]>=0 and v2[i] >= 0 : | ||
v1l.append(v1[i]) | ||
v2l.append(v2[i]) | ||
if len(v1l) > 0 : | ||
return numpy.cov( v1l, v2l )[0,1] | ||
else : | ||
return 0 | ||
|
||
# def tanimoto(self,r1,r2): | ||
|
||
|
||
|
||
engine = Engine() | ||
engine.set_data(data) | ||
engine.create_referees() | ||
engine.create_papers() | ||
engine.create_matrix() | ||
print engine.referees | ||
print engine.papers | ||
print engine.matrix | ||
print engine.similarity(2,4) | ||
print engine.pearson(2,3) |