Skip to content

Commit

Permalink
Merge pull request #33 from JSchmie/tests
Browse files Browse the repository at this point in the history
Good Job :)
  • Loading branch information
JSchmie authored Apr 29, 2024
2 parents 91623ac + ba2eac6 commit fee9f0b
Show file tree
Hide file tree
Showing 8 changed files with 327 additions and 120 deletions.
43 changes: 43 additions & 0 deletions .github/workflows/pytest.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
name: Run tests

on:
#push:

pull_request:
branches: ['main', 'develop']

workflow_dispatch:

jobs:
pytest:
runs-on: ubuntu-latest

steps:
- name: Checkout
uses: actions/checkout@v3

- name: Setup Python
uses: actions/setup-python@v3
with:
python-version: 3.9

- name: Install Dependencies
run: |
sudo apt update && sudo apt upgrade
python -m pip install --upgrade pip
pip install -r requirements.txt
pip install .
sudo apt-get install libsndfile1-dev
sudo apt-get install ffmpeg
pip install pytest
- name: Run pytest
env:
HF_TOKEN : ${{ secrets.HF_TOKEN }}
run: |
pytest
Binary file added test/audio_test_1.mp4
Binary file not shown.
Binary file added test/audio_test_2.mp4
Binary file not shown.
127 changes: 127 additions & 0 deletions test/test_audio.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
import pytest
from scraibe.audio import AudioProcessor
import torch



DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
TEST_WAVEFORM = torch.sin(torch.randn(160000)).to(DEVICE)
TEST_SR = 16000
SAMPLE_RATE = 16000
NORMALIZATION_FACTOR = 32768


@pytest.fixture
def probe_audio_processor():
"""Fixture for creating an instance of the AudioProcessor class with test waveform and sample rate.
This fixture is used to create an instance of the AudioProcessor class with a predfined test waveform and sample rate (TEST_SR). It returns the instantiated AudioProcessor , which can bes used as a
dependency in other test functions.
Returns:
AudioProcessor (obj): An instance of the AudioProcessor class with the test waveform and sample rate.
"""
return AudioProcessor(TEST_WAVEFORM, TEST_SR)






def test_AudioProcessor_init(probe_audio_processor):
"""
Test the initialization of the AudioProcessor class.
This test verifies that the AUdioProcessor class is correctly initialized with the provided waveform and sample rate. It checks whether the instantiated AhdioProcessor object has the correct attributes
and whether the waveform and sample rate match the expected values.
Args:
probe_audio_processor (obj): An instance of the AudioProcessor class to be tested.
Returns:
None
"""
assert isinstance(probe_audio_processor, AudioProcessor)
assert probe_audio_processor.waveform.device == TEST_WAVEFORM.device
assert torch.equal(probe_audio_processor.waveform, TEST_WAVEFORM)
assert probe_audio_processor.sr == TEST_SR



def test_cut(probe_audio_processor):
"""Test the cut function of the AudioProcessor class.
This test verifies that the cut function correctly extracts a segment of audio data from
the waveform, given start and end indices. It checks whether the size of the extracted segment matches
the expected size based on the provided start and end indices and the sample rate.
Returns:
None
"""

start = 4
end = 7
trimmed_waveform = probe_audio_processor.cut(start, end)
expected_size = int((end - start) * TEST_SR)
real_size = trimmed_waveform.size(0)
assert real_size == expected_size
#assert AudioProcessor(TEST_WAVEFORM, TEST_SR).cut(start, end).size() == int((end - start) * TEST_SR)










def test_audio_processor_invalid_sr():
"""Test the behavior of AudioProcessor when an invalid smaple rate is provided.
This test verifies that the AudioProcessor constructor raises a ValueError when an invalid sample rate is provided. It uses the pytest.raises context manager to check if the ValueError is raised when initializing an
AudioProcessor object with an invalid sample rate.
Returns:
None
"""
with pytest.raises(ValueError):
AudioProcessor(TEST_WAVEFORM, [44100,48000])


def test_audio_processor_SAMPLE_RATE():
"""Test the default sample rate of the AudioProcessor class.
This test verifies that the default sample rate of the AudioProcessor class matches the expected value defined by the constant SAMPLE_RATE. It instantiates an AudioProcessor object with a test waveform
and checks whether the sample rate attribute (sr) of the AudioProcessor object equals the predefined constant SAMPLE_RATE.
Returns:
None
"""
probe_audio_processor = AudioProcessor(TEST_WAVEFORM)
assert probe_audio_processor.sr == SAMPLE_RATE

















58 changes: 58 additions & 0 deletions test/test_autotranscript.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
import pytest
from scraibe import Scraibe, Diariser, Transcriber, Transcript
from unittest.mock import MagicMock, patch
import os





@pytest.fixture
def create_scraibe_instance():
if "HF_TOKEN" in os.environ:
return Scraibe(use_auth_token=os.environ["HF_TOKEN"] )
else:
return Scraibe()




def test_scraibe_init(create_scraibe_instance):
model = create_scraibe_instance
assert isinstance(model.transcriber, Transcriber)
assert isinstance(model.diariser, Diariser)


def test_scraibe_autotranscribe(create_scraibe_instance):
model = create_scraibe_instance
transcript = model.autotranscribe('test/audio_test_2.mp4')
assert isinstance(transcript, Transcript)


def test_scraibe_diarization(create_scraibe_instance):
model = create_scraibe_instance
diarisation_result = model.diarization('test/audio_test_2.mp4')
assert isinstance(diarisation_result, dict)


def test_scraibe_transcribe(create_scraibe_instance):
model = create_scraibe_instance
transcription_result = model.transcribe('test/audio_test_2.mp4')
assert isinstance(transcription_result, str)


""" def test_remove_audio_file(create_scraibe_instance):
model = create_scraibe_instance
with pytest.raises(ValueError):
model.remove_audio_file("non_existing_audio_file")
model.remove_audio_file("audio_test_2.mp4")
assert not os.path.exists("audio_test_2.mp4") """


""" def test_get_audio_file(create_scraibe_instance):
model = create_scraibe_instance
audio_file = os.path.exist("audio_test_2.mp4")
assert isinstance(audio_file, AudioProcessor)
assert isinstance(audio_file.waveform, torch.Tensor)
assert isinstance(audio_file.sr, torch.Tensor) """
47 changes: 47 additions & 0 deletions test/test_diarisation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
import pytest
import os
from unittest import mock
from scraibe import diarisation, Diariser



@pytest.fixture
def diariser_instance():
"""Fixture for creating an instance of the Diariser class with mocked token.
This fixture is used to create an instance of the the Diariser class with a mocked token returned by the _get_token method. It patches the _get_token method of the Diariser class
using unit.test.mock.patch.object, ensuring that it returns a predetrmined value ('personal Hugging-Face token'). The mocked Diariser object is retunrned and can be used as a dependency in otehr tests.
Returns:
Diariser(Obj): An instance of the Diariser class with a mocked token.
"""
#with mock.patch.object(Diariser, '_get_token', return_value = 'HF_TOKEN' ):
return Diariser('pyannote')



def test_Diariser_init(diariser_instance):
"""Test the initialization of the Diariser class.
This test verifies that the Diariser class is correctly initialized with the specified model.
It checks whether the 'model' attribute of the instantiated Diariser object equals 'pyannote'.
Args:
diariser_instance (obj): instance of the Diariser class
Returns:
None
"""
assert diariser_instance.model == 'pyannote'











52 changes: 52 additions & 0 deletions test/test_transcriber.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
import pytest
from unittest.mock import patch
from scraibe import Transcriber
import torch



DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
TEST_WAVEFORM = "Hello World"

"""
@pytest.mark.parametrize("audio_file, expected_transcription",[("path_to_test_audiofile", "test_transcription")] )
@patch("scraibe.Transcriber.load_model")
def test_transcriber(mock_load_model, audio_file, expected_transcription):
Args:
mock_load_model (_type_): _description_
audio_file (_type_): _description_
expected_transcription (_type_): _description_
mock_model = mock_load_model.return_value
mock_model.transcribe.return_value ={"text": expected_transcription}
transcriber = Transcriber.load_model(model="medium")
transcription_result = transcriber.transcribe(audio=audio_file)
assert transcription_result == expected_transcription """

@pytest.fixture
def transcriber_instance():
return Transcriber.load_model('medium')

def test_transcriber_initialization(transcriber_instance):
assert isinstance(transcriber_instance, Transcriber)

def test_get_whisper_kwargs():
kwargs = {"arg1": 1, "arg3": 3}
valid_kwargs = Transcriber._get_whisper_kwargs(**kwargs)
assert not valid_kwargs == {"arg1": 1, "arg3": 3}


def test_transcribe(transcriber_instance):
model = transcriber_instance
#mocker.patch.object(transcriber_instance.model, 'transcribe', return_value={'Hello, World !'} )
transcript = model.transcribe('test/audio_test_2.mp4')
assert isinstance(transcript, str)



Loading

0 comments on commit fee9f0b

Please sign in to comment.