Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(modeling): avoid calling item() in fwd/bwd #6

Open
wants to merge 7 commits into
base: develop
Choose a base branch
from

Conversation

SolenoidWGT
Copy link

Motivation

torch.tensor.item() is a synchronization operation when calling over a cuda tensor, which will copy data from device to host, thereby blocking the kernel execution on all streams.

Modification

Please briefly describe what modification is made in this PR.

BC-breaking (Optional)

Does the modification introduce changes that break the backward compatibility of the downstream repositories?
If so, please describe how it breaks the compatibility and how the downstream projects should modify their code to keep compatibility with this PR.

Use cases (Optional)

If this PR introduces a new feature, it is better to list some use cases here and update the documentation.

Checklist

Before PR:

  • Pre-commit or other linting tools are used to fix the potential lint issues.
  • Bug fixes are fully covered by unit tests, the case that causes the bug should be added in the unit tests.
  • The modification is covered by complete unit tests. If not, please add more unit test to ensure the correctness.
  • The documentation has been modified accordingly, like docstring or example tutorials.

After PR:

  • If the modification has potential influence on downstream or other related projects, this PR should be tested with those projects.
  • CLA has been signed and all committers have signed the CLA in this PR.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants