-
Notifications
You must be signed in to change notification settings - Fork 33
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
145 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
# SPDX-FileCopyrightText: 2020 - 2023 Intel Corporation | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
""" | ||
This example shows how you can run kernels asynchronously and pipeline them. | ||
In theory it runs computation and memory copy independently but because memory | ||
copy takes less time than the deviation on computation time, I was unable to | ||
capture any measurable time improvement. | ||
""" | ||
|
||
import argparse | ||
import time | ||
|
||
import dpctl | ||
import dpnp | ||
import numpy as np | ||
|
||
import numba_dpex as dpex | ||
import numba_dpex.experimental as dpex_exp | ||
|
||
|
||
@dpex_exp.kernel | ||
def async_kernel(x): | ||
idx = dpex.get_global_id(0) | ||
|
||
for i in range(1300): | ||
den = x.dtype.type(i + 1) | ||
x[idx] += x.dtype.type(1) / (den * den * den) | ||
|
||
|
||
def run_serial(host_arr, n_itr): | ||
t0 = time.time() | ||
q = dpctl.SyclQueue() | ||
|
||
a_host = dpnp.asarray(host_arr, usm_type="host", sycl_queue=q) | ||
usm_host_data = dpnp.get_usm_ndarray(a_host).usm_data | ||
|
||
batch_shape = (n_itr,) + a_host.shape | ||
device_alloc = dpnp.empty(batch_shape, usm_type="device", sycl_queue=q) | ||
|
||
for offset in range(n_itr): | ||
_a = device_alloc[offset] | ||
_a_data = dpnp.get_usm_ndarray(_a).usm_data | ||
|
||
q.memcpy(_a_data, usm_host_data, usm_host_data.nbytes) | ||
|
||
dpex_exp.call_kernel( | ||
async_kernel, | ||
dpex.Range(len(_a)), | ||
_a, | ||
) | ||
|
||
dt = time.time() - t0 | ||
|
||
return dt, None, None | ||
|
||
|
||
def run_pipeline(host_arr, n_itr): | ||
t0 = time.time() | ||
q = dpctl.SyclQueue() | ||
|
||
a_host = dpnp.asarray(host_arr, usm_type="host", sycl_queue=q) | ||
usm_host_data = dpnp.get_usm_ndarray(a_host).usm_data | ||
|
||
batch_shape = (n_itr,) + a_host.shape | ||
device_alloc = dpnp.empty(batch_shape, usm_type="device", sycl_queue=q) | ||
|
||
e_a = None | ||
e_b = None | ||
|
||
for offset in range(n_itr): | ||
_a = device_alloc[offset] | ||
_a_data = dpnp.get_usm_ndarray(_a).usm_data | ||
|
||
e_a = q.memcpy_async( | ||
_a_data, | ||
usm_host_data, | ||
usm_host_data.nbytes, | ||
[e_a] if e_a is not None else [], | ||
) | ||
|
||
e_a.wait() | ||
|
||
_, e_a = dpex_exp.call_kernel_async( | ||
async_kernel, | ||
dpex.Range(len(_a)), | ||
(e_a,), | ||
_a, | ||
) | ||
|
||
e_a.wait() | ||
|
||
e_a, e_b = e_b, e_a | ||
|
||
q.wait() | ||
dt = time.time() - t0 | ||
|
||
return dt, None, None | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description="Process some integers.") | ||
parser.add_argument( | ||
"--n", | ||
type=int, | ||
default=2_000_000, | ||
help="an integer for the input array", | ||
) | ||
parser.add_argument( | ||
"--n_itr", type=int, default=100, help="number of iterations" | ||
) | ||
parser.add_argument("--reps", type=int, default=5, help="number of repeats") | ||
parser.add_argument( | ||
"--algo", | ||
type=str, | ||
default="pipeline", | ||
choices=["pipeline", "serial"], | ||
help="algo", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
print( | ||
"timing %d elements for %d iterations" % (args.n, args.n_itr), | ||
flush=True, | ||
) | ||
|
||
print("using %f MB of memory" % (args.n * 4 / 1024 / 1024), flush=True) | ||
|
||
a = np.arange(args.n, dtype=np.float32) | ||
|
||
algo_func = { | ||
"pipeline": run_pipeline, | ||
"serial": run_serial, | ||
}.get(args.algo) | ||
|
||
for _ in range(args.reps): | ||
dtp = algo_func(a, args.n_itr) | ||
print(f"{args.algo} time tot|pci|cmp|speedup: {dtp}", flush=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |