Skip to content
This repository was archived by the owner on Jan 23, 2023. It is now read-only.

Commit

Permalink
standaradize detector interface
Browse files Browse the repository at this point in the history
  • Loading branch information
rashley-iqt committed Nov 17, 2021
1 parent 5540376 commit 677bce4
Show file tree
Hide file tree
Showing 6 changed files with 43 additions and 35 deletions.
1 change: 0 additions & 1 deletion detectors/boken/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,6 @@ def predict():
score = model.inference(video_path)
pred={'filename': video}
pred[MODEL_NAME]=score
predictions.append({'filename': video, 'boken': score})
else:
return make_response(f"File {video} not found.", 400)
except ValidationError as e:
Expand Down
14 changes: 8 additions & 6 deletions detectors/detector_template/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,21 +22,23 @@ def predict():
predictions = []
for filename in video_list:
score = 0.5
video = ''
try:
validate_filename(filename)
video = sanitize_filename(file_name, platform="auto")
video = sanitize_filename(filename, platform="auto")
video_path = os.path.join('/uploads/', video)
if os.path.exists(video_path):
score = model.inference(video_path)
pred={'filename': video}
pred[MODEL_NAME]=score
else:
return make_response(f"File {video} not found.", 400)
except ValidationError as e:
print(f'{e}')
return make_response(f"{e}", 400)
except:
pass
pred={'filename': video}
pred[MODEL_NAME]=score
predictions.append(pred)
except Exception as err:
print(f'{err}')
return make_response(f"{err}", 500)

result = pd.DataFrame(predictions)
return result.to_json()
Expand Down
15 changes: 8 additions & 7 deletions detectors/eighteen/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,24 +38,25 @@ def starting_url():
def predict():
video_list = request.get_json(force=True)['video_list']
predictions = []
video = ''
for filename in video_list:
score = 0.5
video = ''
try:
validate_filename(filename)
video = sanitize_filename(file_name, platform="auto")
video = sanitize_filename(filename, platform="auto")
video_path = os.path.join('/uploads/', video)
if os.path.exists(video_path):
score = model.inference(video_path)
pred={'filename': video}
pred[MODEL_NAME]=score
else:
return make_response(f"File {video} not found.", 400)
except ValidationError as e:
print(f'{e}')
return make_response(f"{e}", 400)
except:
pass
pred={'filename': video}
pred[MODEL_NAME]=score
predictions.append(pred)
except Exception as err:
print(f'{err}')
return make_response(f"{err}", 500)

result = pd.DataFrame(predictions)
return result.to_json()
Expand Down
15 changes: 8 additions & 7 deletions detectors/medics/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,24 +21,25 @@ def starting_url():
def predict():
video_list = request.get_json(force=True)['video_list']
predictions = []
video = ''
for filename in video_list:
score = 0.5
video = ''
try:
validate_filename(filename)
video = sanitize_filename(file_name, platform="auto")
video = sanitize_filename(filename, platform="auto")
video_path = os.path.join('/uploads/', video)
if os.path.exists(video_path):
score = model.inference(video_path)
pred={'filename': video}
pred[MODEL_NAME]=score
else:
return make_response(f"File {video} not found.", 400)
except ValidationError as e:
print(f'{e}')
return make_response(f"{e}", 400)
except:
pass
pred={'filename': video}
pred[MODEL_NAME]=score
predictions.append(pred)
except Exception as err:
print(f'{err}')
return make_response(f"{err}", 500)

result = pd.DataFrame(predictions)
return result.to_json()
Expand Down
18 changes: 11 additions & 7 deletions detectors/ntech/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,24 +36,28 @@ def starting_url():
def predict():
video_list = request.get_json(force=True)['video_list']
predictions = []
video = ''
for filename in video_list:
score = 0.5
video = ''
try:
validate_filename(filename)
video = sanitize_filename(file_name, platform="auto")
video = sanitize_filename(filename, platform="auto")
video_path = os.path.join('/uploads/', video)
if os.path.exists(video_path):
score = model.inference(video_path)
pred={'filename': video}
pred[MODEL_NAME]=score
else:
return make_response(f"File {video} not found.", 400)
except ValidationError as e:
print(f'{e}')
return make_response(f"{e}", 400)
except:
pass
pred={'filename': video}
pred[MODEL_NAME]=score
predictions.append(pred)
except Exception as err:
print(f'{err}')
return make_response(f"{err}", 500)

result = pd.DataFrame(predictions)
return result.to_json()

result = pd.DataFrame(predictions)
return result.to_json()
Expand Down
15 changes: 8 additions & 7 deletions detectors/selimsef/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,24 +21,25 @@ def starting_url():
def predict():
video_list = request.get_json(force=True)['video_list']
predictions = []
video = ''
for filename in video_list:
score = 0.5
video = ''
try:
validate_filename(filename)
video = sanitize_filename(file_name, platform="auto")
video = sanitize_filename(filename, platform="auto")
video_path = os.path.join('/uploads/', video)
if os.path.exists(video_path):
score = model.inference(video_path)
pred={'filename': video}
pred[MODEL_NAME]=score
else:
return make_response(f"File {video} not found.", 400)
except ValidationError as e:
print(f'{e}')
return make_response(f"{e}", 400)
except:
pass
pred={'filename': video}
pred[MODEL_NAME]=score
predictions.append(pred)
except Exception as err:
print(f'{err}')
return make_response(f"{err}", 500)

result = pd.DataFrame(predictions)
return result.to_json()
Expand Down

0 comments on commit 677bce4

Please sign in to comment.