Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Testing finetuning for more Prithvi-2 backbones #322

Merged
merged 3 commits into from
Dec 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 150 additions & 0 deletions tests/resources/configs/manufactured-finetune_prithvi_eo_v2_300.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
# lightning.pytorch==2.1.1
seed_everything: 42
trainer:
accelerator: cpu
strategy: auto
devices: auto
num_nodes: 1
# precision: 16-mixed
logger:
class_path: TensorBoardLogger
init_args:
save_dir: tests/
name: all_ecos_random
callbacks:
- class_path: RichProgressBar
- class_path: LearningRateMonitor
init_args:
logging_interval: epoch
- class_path: EarlyStopping
init_args:
monitor: val/loss
patience: 100
max_epochs: 2
check_val_every_n_epoch: 1
log_every_n_steps: 20
enable_checkpointing: true
default_root_dir: tests/
data:
class_path: GenericNonGeoPixelwiseRegressionDataModule
init_args:
batch_size: 2
num_workers: 4
train_transform:
#- class_path: albumentations.HorizontalFlip
# init_args:
# p: 0.5
#- class_path: albumentations.Rotate
# init_args:
# limit: 30
# border_mode: 0 # cv2.BORDER_CONSTANT
# value: 0
# # mask_value: 1
# p: 0.5
- class_path: ToTensorV2
dataset_bands:
- 0
- BLUE
- GREEN
- RED
- NIR_NARROW
- SWIR_1
- SWIR_2
- 1
- 2
- 3
- 4
output_bands:
- BLUE
- GREEN
- RED
- NIR_NARROW
- SWIR_1
- SWIR_2
rgb_indices:
- 2
- 1
- 0
train_data_root: tests/resources/inputs
train_label_data_root: tests/resources/inputs
val_data_root: tests/resources/inputs
val_label_data_root: tests/resources/inputs
test_data_root: tests/resources/inputs
test_label_data_root: tests/resources/inputs
img_grep: "regression*input*.tif"
label_grep: "regression*label*.tif"
means:
- 547.36707
- 898.5121
- 1020.9082
- 2665.5352
- 2340.584
- 1610.1407
stds:
- 411.4701
- 558.54065
- 815.94025
- 812.4403
- 1113.7145
- 1067.641
no_label_replace: -1
no_data_replace: 0

model:
class_path: terratorch.tasks.PixelwiseRegressionTask
init_args:
model_args:
decoder: UperNetDecoder
pretrained: false
backbone: prithvi_eo_v2_300
# backbone_pretrained_cfg_overlay:
# file: tests/prithvi_vit_300.pt
backbone_drop_path_rate: 0.3
# backbone_window_size: 8
decoder_channels: 64
num_frames: 1
in_channels: 6
bands:
- BLUE
- GREEN
- RED
- NIR_NARROW
- SWIR_1
- SWIR_2
head_dropout: 0.5708022831486758
head_final_act: torch.nn.ReLU
head_learned_upscale_layers: 2
loss: rmse
#aux_heads:
# - name: aux_head
# decoder: IdentityDecoder
# decoder_args:
# decoder_out_index: 2
# head_dropout: 0,5
# head_channel_list:
# - 64
# head_final_act: torch.nn.ReLU
#aux_loss:
# aux_head: 0.4
ignore_index: -1
freeze_backbone: true
freeze_decoder: false
model_factory: PrithviModelFactory

# uncomment this block for tiled inference
# tiled_inference_parameters:
# h_crop: 224
# h_stride: 192
# w_crop: 224
# w_stride: 192
# average_patches: true
optimizer:
class_path: torch.optim.AdamW
init_args:
lr: 0.00013524680528283027
weight_decay: 0.047782217873995426
lr_scheduler:
class_path: ReduceLROnPlateau
init_args:
monitor: val/loss

150 changes: 150 additions & 0 deletions tests/resources/configs/manufactured-finetune_prithvi_eo_v2_600.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
# lightning.pytorch==2.1.1
seed_everything: 42
trainer:
accelerator: cpu
strategy: auto
devices: auto
num_nodes: 1
# precision: 16-mixed
logger:
class_path: TensorBoardLogger
init_args:
save_dir: tests/
name: all_ecos_random
callbacks:
- class_path: RichProgressBar
- class_path: LearningRateMonitor
init_args:
logging_interval: epoch
- class_path: EarlyStopping
init_args:
monitor: val/loss
patience: 100
max_epochs: 2
check_val_every_n_epoch: 1
log_every_n_steps: 20
enable_checkpointing: true
default_root_dir: tests/
data:
class_path: GenericNonGeoPixelwiseRegressionDataModule
init_args:
batch_size: 2
num_workers: 4
train_transform:
#- class_path: albumentations.HorizontalFlip
# init_args:
# p: 0.5
#- class_path: albumentations.Rotate
# init_args:
# limit: 30
# border_mode: 0 # cv2.BORDER_CONSTANT
# value: 0
# # mask_value: 1
# p: 0.5
- class_path: ToTensorV2
dataset_bands:
- 0
- BLUE
- GREEN
- RED
- NIR_NARROW
- SWIR_1
- SWIR_2
- 1
- 2
- 3
- 4
output_bands:
- BLUE
- GREEN
- RED
- NIR_NARROW
- SWIR_1
- SWIR_2
rgb_indices:
- 2
- 1
- 0
train_data_root: tests/resources/inputs
train_label_data_root: tests/resources/inputs
val_data_root: tests/resources/inputs
val_label_data_root: tests/resources/inputs
test_data_root: tests/resources/inputs
test_label_data_root: tests/resources/inputs
img_grep: "regression*input*.tif"
label_grep: "regression*label*.tif"
means:
- 547.36707
- 898.5121
- 1020.9082
- 2665.5352
- 2340.584
- 1610.1407
stds:
- 411.4701
- 558.54065
- 815.94025
- 812.4403
- 1113.7145
- 1067.641
no_label_replace: -1
no_data_replace: 0

model:
class_path: terratorch.tasks.PixelwiseRegressionTask
init_args:
model_args:
decoder: UperNetDecoder
pretrained: false
backbone: prithvi_eo_v2_600
# backbone_pretrained_cfg_overlay:
# file: tests/prithvi_vit_300.pt
backbone_drop_path_rate: 0.3
# backbone_window_size: 8
decoder_channels: 64
num_frames: 1
in_channels: 6
bands:
- BLUE
- GREEN
- RED
- NIR_NARROW
- SWIR_1
- SWIR_2
head_dropout: 0.5708022831486758
head_final_act: torch.nn.ReLU
head_learned_upscale_layers: 2
loss: rmse
#aux_heads:
# - name: aux_head
# decoder: IdentityDecoder
# decoder_args:
# decoder_out_index: 2
# head_dropout: 0,5
# head_channel_list:
# - 64
# head_final_act: torch.nn.ReLU
#aux_loss:
# aux_head: 0.4
ignore_index: -1
freeze_backbone: true
freeze_decoder: false
model_factory: PrithviModelFactory

# uncomment this block for tiled inference
# tiled_inference_parameters:
# h_crop: 224
# h_stride: 192
# w_crop: 224
# w_stride: 192
# average_patches: true
optimizer:
class_path: torch.optim.AdamW
init_args:
lr: 0.00013524680528283027
weight_decay: 0.047782217873995426
lr_scheduler:
class_path: ReduceLROnPlateau
init_args:
monitor: val/loss

Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ model:
model_args:
decoder: UperNetDecoder
pretrained: false
backbone: prithvi_vit_300
backbone: prithvi_eo_v2_300
# backbone_pretrained_cfg_overlay:
# file: tests/prithvi_vit_300.pt
backbone_drop_path_rate: 0.3
Expand Down
9 changes: 6 additions & 3 deletions tests/test_backbones.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,22 +35,23 @@ def input_386():
return torch.ones((1, NUM_CHANNELS, 386, 386))


@pytest.mark.parametrize("model_name", ["prithvi_eo_v1_100", "prithvi_eo_v2_300", "prithvi_swin_B"])
@pytest.mark.parametrize("model_name", ["prithvi_swin_B", "prithvi_swin_L", "prithvi_eo_v1_100", "prithvi_eo_v2_300", "prithvi_swin_B"])
@pytest.mark.parametrize("test_input", ["input_224", "input_512"])
def test_can_create_backbones_from_timm(model_name, test_input, request):
backbone = timm.create_model(model_name, pretrained=False)
input_tensor = request.getfixturevalue(test_input)
backbone(input_tensor)
gc.collect()

@pytest.mark.parametrize("model_name", ["prithvi_eo_v1_100", "prithvi_eo_v2_300", "prithvi_swin_B"])
@pytest.mark.parametrize("model_name", ["prithvi_swin_B", "prithvi_swin_L", "prithvi_eo_v1_100", "prithvi_eo_v2_300", "prithvi_swin_B"])
@pytest.mark.parametrize("test_input", ["input_224", "input_512"])
def test_can_create_backbones_from_timm_features_only(model_name, test_input, request):
backbone = timm.create_model(model_name, pretrained=False, features_only=True)
input_tensor = request.getfixturevalue(test_input)
backbone(input_tensor)
gc.collect()
@pytest.mark.parametrize("model_name", ["prithvi_eo_v1_100", "prithvi_eo_v2_300", "prithvi_swin_B"])

@pytest.mark.parametrize("model_name", ["prithvi_swin_L", "prithvi_swin_L", "prithvi_eo_v1_100", "prithvi_eo_v2_300", "prithvi_swin_B"])
@pytest.mark.parametrize("prefix", ["", "timm_"])
def test_can_create_timm_backbones_from_registry(model_name, input_224, prefix):
backbone = BACKBONE_REGISTRY.build(prefix+model_name, pretrained=False)
Expand All @@ -62,12 +63,14 @@ def test_vit_models_accept_multitemporal(model_name, input_224_multitemporal):
backbone = timm.create_model(model_name, pretrained=False, num_frames=NUM_FRAMES)
backbone(input_224_multitemporal)
gc.collect()

@pytest.mark.parametrize("model_name", ["prithvi_eo_v1_100", "prithvi_eo_v2_300"])
def test_vit_models_non_divisible_input(model_name, input_non_divisible):
#padding 'none','constant', 'reflect', 'replicate' or 'circular' default is 'none'
backbone = timm.create_model(model_name, pretrained=False, features_only=True, num_frames=NUM_FRAMES, padding='constant')
backbone(input_non_divisible)
gc.collect()

@pytest.mark.parametrize("model_name", ["prithvi_eo_v1_100", "prithvi_eo_v2_300"])
@pytest.mark.parametrize("patch_size", [8, 16])
@pytest.mark.parametrize("patch_size_time", [1, 2, 4])
Expand Down
2 changes: 1 addition & 1 deletion tests/test_finetune.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ def setup_and_cleanup(model_name):
if os.path.isdir(os.path.join("tests", "all_ecos_random")):
shutil.rmtree(os.path.join("tests", "all_ecos_random"))

@pytest.mark.parametrize("model_name", ["prithvi_swin_B", "prithvi_vit_100"])
@pytest.mark.parametrize("model_name", ["prithvi_swin_B", "prithvi_swin_L", "prithvi_vit_100", "prithvi_eo_v2_300", "prithvi_eo_v2_600"])
@pytest.mark.parametrize("case", ["fit", "test", "validate"])
def test_finetune_multiple_backbones(model_name, case):
command_list = [case, "-c", f"tests/resources/configs/manufactured-finetune_{model_name}.yaml"]
Expand Down
Loading