-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Joao Lucas de Sousa Almeida <[email protected]>
- Loading branch information
1 parent
fc1bc25
commit 974f177
Showing
2 changed files
with
75 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
|
||
from torchgeo.trainers import BaseTask | ||
|
||
|
||
class TerraTorchTask(BaseTask): | ||
|
||
def __init__(self, task:str=None): | ||
|
||
self.task = task | ||
|
||
super().__init__() | ||
|
||
def configure_models(self) -> None: | ||
if not hasattr(self, "model_factory"): | ||
if self.hparams["freeze_backbone"] or self.hparams["freeze_decoder"]: | ||
logger.warning("freeze_backbone and freeze_decoder are ignored if a custom model is provided.") | ||
# Skipping model factory because custom model is provided | ||
return | ||
|
||
self.model: Model = self.model_factory.build_model( | ||
self.task, aux_decoders=self.aux_heads, **self.hparams["model_args"] | ||
) | ||
|
||
if self.hparams["freeze_backbone"]: | ||
if self.hparams.get("peft_config", None) is not None: | ||
msg = "PEFT should be run with freeze_backbone = False" | ||
raise ValueError(msg) | ||
self.model.freeze_encoder() | ||
|
||
if self.hparams["freeze_decoder"]: | ||
self.model.freeze_decoder() | ||
|
||
def configure_optimizers( | ||
self, | ||
) -> "lightning.pytorch.utilities.types.OptimizerLRSchedulerConfig": | ||
optimizer = self.hparams["optimizer"] | ||
if optimizer is None: | ||
optimizer = "Adam" | ||
return optimizer_factory( | ||
optimizer, | ||
self.hparams["lr"], | ||
self.parameters(), | ||
self.hparams["optimizer_hparams"], | ||
self.hparams["scheduler"], | ||
self.monitor, | ||
self.hparams["scheduler_hparams"], | ||
) | ||
|
||
def on_train_epoch_end(self) -> None: | ||
self.log_dict(self.train_metrics.compute(), sync_dist=True) | ||
self.train_metrics.reset() | ||
return super().on_train_epoch_end() | ||
|
||
def on_validation_epoch_end(self) -> None: | ||
self.log_dict(self.val_metrics.compute(), sync_dist=True) | ||
self.val_metrics.reset() | ||
return super().on_validation_epoch_end() | ||
|
||
|
||
def _do_plot_samples(self, batch_index): | ||
if not self.plot_on_val: # dont plot if self.plot_on_val is 0 | ||
return False | ||
|
||
return ( | ||
batch_index < BATCH_IDX_FOR_VALIDATION_PLOTTING | ||
and hasattr(self.trainer, "datamodule") | ||
and self.logger | ||
and not self.current_epoch % self.plot_on_val # will be True every self.plot_on_val epochs | ||
and hasattr(self.logger, "experiment") | ||
and (hasattr(self.logger.experiment, "add_figure") or hasattr(self.logger.experiment, "log_figure")) | ||
) | ||
|
||
|