Skip to content

Commit

Permalink
unit_pow_2_Zp_gens_m1_5_quo_isog_alt
Browse files Browse the repository at this point in the history
  • Loading branch information
bmtrager committed Jan 5, 2024
1 parent ed32df1 commit ff5c80e
Showing 1 changed file with 23 additions and 1 deletion.
24 changes: 23 additions & 1 deletion coq/FHE/zp_prim_root.v
Original file line number Diff line number Diff line change
Expand Up @@ -2433,6 +2433,17 @@ Proof.
+ apply m1_not_in_unit_3_pow.
Qed.

Lemma unit_pow_2_Zp_gens_m1_3_quo_isog_alt (n : nat) :
let um1 := FinRing.unit 'Z_(2^n.+3) (unitrN1 _) in
let u3 := FinRing.unit 'Z_(2^n.+3) (unit_3_pow_2_Zp n.+2) in
morphism.isog <[u3]> ([group of (units_Zp (2^n.+3)%N)]/<[um1]>).
Proof.
intros.
simpl.
rewrite -unit_pow_2_Zp_gens_m1_3_quo.
apply unit_pow_2_Zp_gens_m1_3_quo_isog.
Qed.

Lemma unit_pow_2_Zp_gens_m1_5_quo_isog (n : nat) :
let um1 := FinRing.unit 'Z_(2^n.+3) (unitrN1 _) in
let u5 := FinRing.unit 'Z_(2^n.+3) (unit_5_pow_2_Zp n.+2) in
Expand Down Expand Up @@ -2470,7 +2481,18 @@ Proof.
rewrite (modn_small small1) in H.
rewrite modn_small in H; lia.
+ apply m1_not_in_unit_5_pow.
Qed.
Qed.

Lemma unit_pow_2_Zp_gens_m1_5_quo_isog_alt (n : nat) :
let um1 := FinRing.unit 'Z_(2^n.+3) (unitrN1 _) in
let u5 := FinRing.unit 'Z_(2^n.+3) (unit_5_pow_2_Zp n.+2) in
morphism.isog <[u5]> ([group of (units_Zp (2^n.+3)%N)]/<[um1]>).
Proof.
intros.
simpl.
rewrite -unit_pow_2_Zp_gens_m1_5_quo.
apply unit_pow_2_Zp_gens_m1_5_quo_isog.
Qed.

End two_pow_units.

Expand Down

0 comments on commit ff5c80e

Please sign in to comment.