Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

quotient by a trivial group #2188

Merged
merged 5 commits into from
Jan 8, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion theories/Algebra/AbSES/Core.v
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@ Proof.
refine ((grp_assoc _ _ _)^ @ _).
refine (ap _ (left_inverse (phi e0.1)) @ _).
apply grp_unit_r.
- apply isembedding_grouphomomorphism.
- apply isembedding_istrivial_kernel.
intros e p.
assert (a : Tr (-1) (hfiber (inclusion E) e)).
1: { refine (isexact_preimage _ (inclusion E) (projection E) _ _).
Expand Down
2 changes: 1 addition & 1 deletion theories/Algebra/AbSES/PullbackFiberSequence.v
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ Proof.
intro b.
refine (ap (projection E) (abses_pullback_inclusion_transpose_beta (inclusion E) F p b) @ _).
apply iscomplex_abses.
- apply isembedding_grouphomomorphism.
- apply isembedding_istrivial_kernel.
intros a q0.
(* Since [inclusion F a] is killed by [grp_quotient_map], its in the image of [B]. *)
pose proof (in_coset := related_quotient_paths _ _ _ q0).
Expand Down
19 changes: 0 additions & 19 deletions theories/Algebra/Groups/Group.v
Original file line number Diff line number Diff line change
Expand Up @@ -1098,25 +1098,6 @@ Global Instance isfreegroup_isfreegroupon (S : Type) (F_S : Group) (i : S -> F_S

(** ** Further properties of group homomorphisms. *)

(** Characterisation of injective group homomorphisms. *)
Lemma isembedding_grouphomomorphism {A B : Group} (f : A $-> B)
: (forall a, f a = group_unit -> a = group_unit) <-> IsEmbedding f.
Proof.
split.
- intros h b.
apply hprop_allpath.
intros [a0 p0] [a1 p1].
srapply path_sigma_hprop; simpl.
apply grp_moveL_1M.
apply h.
rewrite grp_homo_op, grp_homo_inv.
rewrite p0, p1.
apply right_inverse.
- intros E a p.
rapply (isinj_embedding f).
exact (p @ (grp_homo_unit f)^).
Defined.

(** Commutativity can be transferred across isomorphisms. *)
Definition commutative_iso_commutative {G H : Group}
{C : Commutative (@group_sgop G)} (f : GroupIsomorphism G H)
Expand Down
53 changes: 38 additions & 15 deletions theories/Algebra/Groups/Kernel.v
Original file line number Diff line number Diff line change
Expand Up @@ -2,26 +2,26 @@ Require Import Basics Types.
Require Import Algebra.Groups.Group.
Require Import Algebra.Groups.Subgroup.
Require Import WildCat.Core.
Require Import Universes.HSet.

(** * Kernels of group homomorphisms *)

Local Open Scope mc_scope.
Local Open Scope mc_mult_scope.
Local Open Scope path_scope.

Definition grp_kernel {A B : Group} (f : GroupHomomorphism A B) : NormalSubgroup A.
Proof.
snrapply Build_NormalSubgroup.
- srapply (Build_Subgroup' (fun x => f x = group_unit)); cbn beta.
- srapply (Build_Subgroup' (fun x => f x = 1)); cbn beta.
1: apply grp_homo_unit.
intros x y p q.
apply (grp_homo_moveL_1M _ _ _)^-1.
exact (p @ q^).
- intros x y; cbn; intros p.
apply (grp_homo_moveL_1V _ _ _)^-1.
lhs_V nrapply grp_inv_inv.
apply (ap (-)).
exact (grp_homo_moveL_1V f x y p)^.
nrapply (ap (-) _^).
by apply grp_homo_moveL_1V.
Defined.

(** ** Corecursion principle for group kernels *)
Expand Down Expand Up @@ -55,17 +55,40 @@ Proof.
apply path_sigma_hprop; reflexivity.
Defined.

(** ** Characterisation of group embeddings *)
Proposition equiv_kernel_isembedding `{Univalence} {A B : Group} (f : A $-> B)
: (grp_kernel f = trivial_subgroup A :> Subgroup A) <~> IsEmbedding f.
(** The underlying map of a group homomorphism with a trivial kernel is an embedding. *)
Global Instance isembedding_istrivial_kernel {G H : Group} (f : G $-> H)
(triv : IsTrivialGroup (grp_kernel f))
: IsEmbedding f.
Alizter marked this conversation as resolved.
Show resolved Hide resolved
Proof.
intros h.
apply hprop_allpath.
intros [x p] [y q].
srapply path_sigma_hprop; unfold pr1.
apply grp_moveL_1M.
apply triv; simpl.
rhs_V nrapply (grp_inv_r h).
lhs nrapply grp_homo_op.
nrapply (ap011 (.*.) p).
lhs nrapply grp_homo_inv.
exact (ap (^) q).
Defined.

(** If the underlying map of a group homomorphism is an embedding then the kernel is trivial. *)
Definition istrivial_kernel_isembedding {G H : Group} (f : G $-> H)
(emb : IsEmbedding f)
: IsTrivialGroup (grp_kernel f).
Alizter marked this conversation as resolved.
Show resolved Hide resolved
Proof.
intros g p.
rapply (isinj_embedding f).
exact (p @ (grp_homo_unit f)^).
Defined.
Global Hint Immediate istrivial_kernel_isembedding : typeclass_instances.

(** Characterisation of group embeddings *)
Proposition equiv_istrivial_kernel_isembedding `{F : Funext}
{G H : Group} (f : G $-> H)
: IsTrivialGroup (grp_kernel f) <~> IsEmbedding f.
Proof.
refine (_ oE (equiv_path_subgroup' _ _)^-1%equiv).
apply equiv_iff_hprop_uncurried.
refine (iff_compose _ (isembedding_grouphomomorphism f)); split.
- intros E ? ?.
by apply E.
- intros e a; split.
+ apply e.
+ intro p.
exact (ap _ p @ grp_homo_unit f).
split; exact _.
Alizter marked this conversation as resolved.
Show resolved Hide resolved
Defined.
18 changes: 18 additions & 0 deletions theories/Algebra/Groups/QuotientGroup.v
Original file line number Diff line number Diff line change
Expand Up @@ -304,3 +304,21 @@ Proof.
+ srapply path_sigma_hprop.
reflexivity.
Defined.

(** When the normal subgroup [N] is trivial, the inclusion map [G $-> G / N] is an isomorphism. *)
Global Instance catie_grp_quotient_map_trivial {G : Group} (N : NormalSubgroup G)
(triv : IsTrivialGroup N)
: CatIsEquiv (@grp_quotient_map G N).
Proof.
snrapply catie_adjointify.
- srapply (grp_quotient_rec _ _ (Id _)).
apply triv.
- by srapply grp_quotient_ind_hprop.
- reflexivity.
Defined.

(** The group quotient by a trivial group is isomorphic to the original group. *)
Definition grp_quotient_trivial (G : Group) (N : NormalSubgroup G)
(triv : IsTrivialGroup N)
: G $<~> G / N
:= Build_CatEquiv grp_quotient_map.
5 changes: 2 additions & 3 deletions theories/Algebra/Groups/ShortExactSequence.v
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,6 @@ Defined.

(** A complex 0 -> A -> B is purely exact if and only if the kernel of the map A -> B is trivial. *)
Definition equiv_grp_isexact_kernel `{Univalence} {A B : Group} (f : A $-> B)
: IsExact purely (grp_trivial_rec A) f
<~> (grp_kernel f = trivial_subgroup A :> Subgroup _)
:= (equiv_kernel_isembedding f)^-1%equiv
: IsExact purely (grp_trivial_rec A) f <~> IsTrivialGroup (grp_kernel f)
:= (equiv_istrivial_kernel_isembedding f)^-1%equiv
oE equiv_iff_hprop_uncurried (iff_grp_isexact_isembedding f).
4 changes: 4 additions & 0 deletions theories/Algebra/Groups/Subgroup.v
Original file line number Diff line number Diff line change
Expand Up @@ -499,6 +499,10 @@ Defined.
Class IsTrivialGroup@{i} {G : Group@{i}} (H : Subgroup@{i i} G) :=
istrivialgroup : forall x, H x -> trivial_subgroup G x.

Global Instance ishprop_istrivialgroup `{F : Funext} {G : Group} (H : Subgroup G)
: IsHProp (IsTrivialGroup H)
:= istrunc_forall.

Global Instance istrivial_trivial_subgroup {G : Group}
: IsTrivialGroup (trivial_subgroup G)
:= fun x => idmap.
Expand Down
Loading