Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

prime factorization #2062

Merged
merged 18 commits into from
Aug 29, 2024
Merged
Show file tree
Hide file tree
Changes from 14 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 15 additions & 8 deletions theories/Basics/Decidable.v
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,13 @@ Proof.
exact (nnnp (fun np => np p)).
Defined.

Definition iff_stable P `(Stable P) : ~~P <-> P.
Proof.
split.
- apply stable.
- exact (fun x f => f x).
Defined.

(**
Because [vm_compute] evaluates terms in [PROP] eagerly
and does not remove dead code we
Expand Down Expand Up @@ -122,21 +129,21 @@ Global Instance decidable_empty : Decidable Empty

(** ** Transfer along equivalences *)

Definition decidable_iff {A B} (f : A -> B) (f' : B -> A)
Definition decidable_iff {A B} (f : A <-> B)
: Decidable A -> Decidable B.
Proof.
intros [a|na].
- exact (inl (f a)).
- exact (inr (fun b => na (f' b))).
- exact (inl (fst f a)).
- exact (inr (fun b => na (snd f b))).
Defined.

Definition decidable_equiv (A : Type) {B : Type} (f : A -> B) `{IsEquiv A B f}
: Decidable A -> Decidable B
:= decidable_iff f f^-1.

Definition decidable_equiv' (A : Type) {B : Type} (f : A <~> B)
: Decidable A -> Decidable B
:= decidable_equiv A f.
:= decidable_iff f.

Definition decidable_equiv (A : Type) {B : Type} (f : A -> B) `{!IsEquiv f}
: Decidable A -> Decidable B
:= decidable_equiv' _ (Build_Equiv _ _ f _).

Definition decidablepaths_equiv
(A : Type) {B : Type} (f : A -> B) `{IsEquiv A B f}
Expand Down
3 changes: 0 additions & 3 deletions theories/Basics/Equivalences.v
Original file line number Diff line number Diff line change
Expand Up @@ -80,9 +80,6 @@ Ltac change_apply_equiv_compose :=
change ((f oE g) x) with (f (g x))
end.

Definition iff_equiv {A B : Type} (f : A <~> B)
: A <-> B := (equiv_fun f, f^-1).

(** Transporting is an equivalence. *)
Section EquivTransport.

Expand Down
26 changes: 18 additions & 8 deletions theories/Basics/Overture.v
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

(** * Basic definitions of homotopy type theory, particularly the groupoid structure of identity types. *)
(** Import the file of reserved notations so we maintain consistent level notations throughout the library *)
Require Export Basics.Settings Basics.Notations.

Check warning on line 5 in theories/Basics/Overture.v

View workflow job for this annotation

GitHub Actions / opam-build (dev, ubuntu-latest)

Notations "_ ^ _" defined at level 30 with arguments constr

Check warning on line 5 in theories/Basics/Overture.v

View workflow job for this annotation

GitHub Actions / opam-build (dev, ubuntu-latest)

Notations "_ \\ CAT" defined at level 1 with arguments constr

Check warning on line 5 in theories/Basics/Overture.v

View workflow job for this annotation

GitHub Actions / opam-build (dev, ubuntu-latest)

Notations "_ // CAT" defined at level 1 with arguments constr

Local Set Polymorphic Inductive Cumulativity.

Expand Down Expand Up @@ -75,7 +75,7 @@

(** If and only if *)

(** [iff A B], written [A <-> B], expresses the equivalence of [A] and [B] *)
(** [iff A B], written [A <-> B], expresses the logical equivalence of [A] and [B] *)
Definition iff (A B : Type) := prod (A -> B) (B -> A).

Notation "A <-> B" := (iff A B) : type_scope.
Expand Down Expand Up @@ -225,18 +225,25 @@
Definition Compose {A B C : Type} (g : B -> C) (f : A -> B) : A -> C := compose g f.

(** Composition of logical equivalences *)
Global Instance iff_compose : Transitive iff | 1
:= fun A B C f g => (fst g o fst f , snd f o snd g).
Arguments iff_compose {A B C} f g : rename.
Definition iff_compose {A B C} (f : A <-> B) (g : B <-> C) : A <-> C
:= (fst g o fst f , snd f o snd g).

Global Instance transitive_iff : Transitive iff | 1
:= @iff_compose.
jdchristensen marked this conversation as resolved.
Show resolved Hide resolved

(** While we're at it, inverses of logical equivalences *)
Global Instance iff_inverse : Symmetric iff | 1
:= fun A B f => (snd f , fst f).
Arguments iff_inverse {A B} f : rename.
Definition iff_inverse {A B} : (A <-> B) -> (B <-> A)
:= fun f => (snd f , fst f).

Global Instance symmetric_iff : Symmetric iff | 1
:= @iff_inverse.

(** And reflexivity of them *)
Definition iff_refl {A} : A <-> A
:= (idmap , idmap).

Global Instance iff_reflexive : Reflexive iff | 1
:= fun A => (idmap , idmap).
:= @iff_refl.

(** Dependent composition of functions. *)
Definition composeD {A B C} (g : forall b, C b) (f : A -> B) := fun x : A => g (f x).
Expand Down Expand Up @@ -532,6 +539,9 @@
Definition ap10_equiv {A B : Type} {f g : A <~> B} (h : f = g) : f == g
:= ap10 (ap equiv_fun h).

Coercion iff_equiv {A B : Type} (f : A <~> B)
: A <-> B := (equiv_fun f, f^-1).

(** ** Contractibility and truncation levels *)

(** Truncation measures how complicated a type is. In this library, a witness that a type is n-truncated is formalized by the [IsTrunc n] typeclass. In many cases, the typeclass machinery of Coq can automatically infer a witness for a type being n-truncated. Because [IsTrunc n A] itself has no computational content (that is, all witnesses of n-truncation of a type are provably equal), it does not matter much which witness Coq infers. Therefore, the primary concerns in making use of the typeclass machinery are coverage (how many goals can be automatically solved) and speed (how long does it take to solve a goal, and how long does it take to error on a goal we cannot automatically solve). Careful use of typeclass instances and priorities, which determine the order of typeclass resolution, can be used to effectively increase both the coverage and the speed in cases where the goal is solvable. Unfortunately, typeclass resolution tends to spin for a while before failing unless you're very, very, very careful. We currently aim to achieve moderate coverage and fast speed in solvable cases. How long it takes to fail typeclass resolution is not currently considered, though it would be nice someday to be even more careful about things.
Expand Down
3 changes: 1 addition & 2 deletions theories/PropResizing/Nat.v
Original file line number Diff line number Diff line change
Expand Up @@ -149,8 +149,7 @@ Section AssumeStuff.
Qed.

Definition graph_unsucc_equiv_vert@{} : vert A <~> vert B
:= equiv_unfunctor_sum_l@{s s s s s s Set Set Set Set}
f Ha Hb.
:= equiv_unfunctor_sum_l@{s s s s s s} f Ha Hb.

Definition graph_unsucc_equiv_edge@{} (x y : vert A)
: iff@{s s s} (edge A x y) (edge B (graph_unsucc_equiv_vert x) (graph_unsucc_equiv_vert y)).
Expand Down
4 changes: 2 additions & 2 deletions theories/Spaces/Finite/Fin.v
Original file line number Diff line number Diff line change
Expand Up @@ -267,7 +267,7 @@ Proof.
assert (p' := (moveL_equiv_V _ _ p)^).
exists y.
destruct y as [y|[]].
+ simple refine (equiv_unfunctor_sum_l@{Set Set Set Set Set Set Set Set Set Set}
+ simple refine (equiv_unfunctor_sum_l@{Set Set Set Set Set Set}
(fin_transpose_last_with m (inl y) oE e)
_ _ ; _).
{ intros a. ev_equiv.
Expand All @@ -286,7 +286,7 @@ Proof.
* rewrite unfunctor_sum_l_beta.
apply fin_transpose_last_with_invol.
* refine (fin_transpose_last_with_last _ _ @ p^).
+ simple refine (equiv_unfunctor_sum_l@{Set Set Set Set Set Set Set Set Set Set} e _ _ ; _).
+ simple refine (equiv_unfunctor_sum_l@{Set Set Set Set Set Set} e _ _ ; _).
{ intros a.
destruct (is_inl_or_is_inr (e (inl a))) as [l|r].
- exact l.
Expand Down
5 changes: 3 additions & 2 deletions theories/Spaces/Int.v
Original file line number Diff line number Diff line change
Expand Up @@ -124,8 +124,9 @@ Proof.
2-4,6-8: right; intros; discriminate.
2: by left.
1,2: nrapply decidable_iff.
1,4: nrapply ap.
1,3: intros H; by injection H.
1,3: split.
1,3: nrapply ap.
1,2: intros H; by injection H.
1,2: exact _.
Defined.

Expand Down
9 changes: 9 additions & 0 deletions theories/Spaces/List/Core.v
Original file line number Diff line number Diff line change
Expand Up @@ -193,3 +193,12 @@ Fixpoint for_all@{i j|} {A : Type@{i}} (P : A -> Type@{j}) l : Type@{j} :=
| nil => Unit
| x :: l => P x /\ for_all P l
end.

(** ** Exists *)

(** Apply a predicate to all elements of a list and take their disjunction. *)
Fixpoint list_exists@{i j|} {A : Type@{i}} (P : A -> Type@{j}) l : Type@{j} :=
match l with
| nil => Empty
| x :: l => P x + list_exists P l
end.
112 changes: 86 additions & 26 deletions theories/Spaces/List/Theory.v
Original file line number Diff line number Diff line change
Expand Up @@ -719,7 +719,7 @@ Defined.
(** *** Filter *)

(** Produce the list of elements of a list that satisfy a decidable predicate. *)
Fixpoint list_filter {A : Type} (l : list A) (P : A -> Type)
Fixpoint list_filter@{u v|} {A : Type@{u}} (l : list A) (P : A -> Type@{v})
(dec : forall x, Decidable (P x))
: list A
:= match l with
Expand All @@ -729,33 +729,37 @@ Fixpoint list_filter {A : Type} (l : list A) (P : A -> Type)
else list_filter l P dec
end.

Definition inlist_filter {A : Type} (l : list A) (P : A -> Type)
(dec : forall x, Decidable (P x)) (x : A)
: InList x (list_filter l P dec) <-> InList x l /\ P x.
Definition inlist_filter@{u v k | u <= k, v <= k} {A : Type@{u}} (l : list A)
(P : A -> Type@{v}) (dec : forall x, Decidable (P x)) (x : A)
: iff@{u k k} (InList x (list_filter l P dec)) (InList x l /\ P x).
Proof.
simple_list_induction l a l IHl.
- simpl.
symmetry.
apply iff_inverse.
apply iff_equiv.
snrapply prod_empty_l.
snrapply prod_empty_l@{v}.
- simpl.
etransitivity.
2: { apply iff_equiv.
exact ((sum_distrib_r _ _ _)^-1%equiv). }
nrapply iff_compose.
2: { apply iff_inverse.
apply iff_equiv.
exact (sum_distrib_r@{k k k _ _ _ k k} _ _ _). }
destruct (dec a) as [p|p].
+ simpl.
transitivity ((a = x) + InList x l * P x).
snrapply iff_compose.
1: exact (sum (a = x) (prod (InList@{u} x l) (P x))).
1: split; apply functor_sum; only 1,3: exact idmap; apply IHl.
split; apply functor_sum; only 2,4: apply idmap.
* intros []; by split.
split; apply functor_sum@{k k k k}; only 2,4: apply idmap.
* intros [].
exact (idpath, p).
* exact fst.
+ etransitivity.
+ nrapply iff_compose.
1: apply IHl.
apply iff_inverse.
apply iff_equiv.
nrefine (_ oE (sum_empty_l _)^-1%equiv).
snrapply equiv_functor_sum'.
2: reflexivity.
symmetry; apply equiv_to_empty.
nrefine (equiv_compose'@{k k k} (sum_empty_l@{k} _) _).
snrapply equiv_functor_sum'@{k k k k k k}.
2: exact equiv_idmap.
apply equiv_to_empty.
by intros [[] r].
Defined.

Expand Down Expand Up @@ -920,7 +924,7 @@ Proof.
nrefine (_ oE (equiv_inlist_app _ _ _)^-1).
nrefine (_ oE equiv_functor_sum' (B':=x = n) IHn _).
2: { simpl.
exact (equiv_path_inverse _ _ oE sum_empty_r@{Set Set Set} _). }
exact (equiv_path_inverse _ _ oE sum_empty_r@{Set} _). }
nrefine (_ oE equiv_leq_lt_or_eq^-1).
rapply equiv_iff_hprop.
Defined.
Expand Down Expand Up @@ -993,7 +997,7 @@ Proof.
by apply for_all_list_map.
Defined.

(** If a predicate [P] and a prediate [Q] together imply a predicate [R], then [for_all P l] and [for_all Q l] together imply [for_all R l]. There are also some side conditions for the default elements. *)
(** If a predicate [P] and a predicate [Q] together imply a predicate [R], then [for_all P l] and [for_all Q l] together imply [for_all R l]. There are also some side conditions for the default elements. *)
Lemma for_all_list_map2 {A B C : Type}
(P : A -> Type) (Q : B -> Type) (R : C -> Type)
(f : A -> B -> C) (Hf : forall x y, P x -> Q y -> R (f x y))
Expand Down Expand Up @@ -1111,11 +1115,67 @@ Global Instance decidable_for_all {A : Type} (P : A -> Type)
`{forall x, Decidable (P x)} (l : list A)
: Decidable (for_all P l).
Proof.
induction l as [|x l IHl].
- exact (inl tt).
- destruct IHl as [Hl | Hl].
+ destruct (dec (P x)) as [Hx | Hx].
* exact (inl (Hx, Hl)).
* exact (inr (fun H => Hx (fst H))).
+ exact (inr (fun H => Hl (snd H))).
simple_list_induction l x l IHl; exact _.
Defined.

(** If a predicate [P] is decidable then so is [list_exists P]. *)
Global Instance decidable_list_exists {A : Type} (P : A -> Type)
`{forall x, Decidable (P x)} (l : list A)
: Decidable (list_exists P l).
Proof.
simple_list_induction l x l IHl; exact _.
Defined.

Definition inlist_list_exists {A : Type} (P : A -> Type) (l : list A)
: list_exists P l -> exists (x : A), InList x l /\ P x.
Proof.
simple_list_induction l x l IHl.
1: done.
simpl.
intros [Px | ex].
- exists x.
by split; [left|].
- destruct (IHl ex) as [x' [H Px']].
exists x'.
by split; [right|].
Defined.

Definition list_exists_inlist {A : Type} (P : A -> Type) (l : list A)
: forall (x : A), InList x l -> P x -> list_exists P l.
Proof.
simple_list_induction l x l IHl.
1: trivial.
simpl; intros y H p; revert H.
apply functor_sum.
- exact (fun r => r^ # p).
- intros H.
by apply (IHl y).
Defined.

Definition list_exists_seq {n : nat} (P : nat -> Type)
(H : forall k, P k -> (k < n)%nat)
: (exists k, P k) <-> list_exists P (seq n).
Proof.
split.
- intros [k p].
snrapply (list_exists_inlist P _ k _ p).
apply inlist_seq, H.
exact p.
- intros H1.
apply inlist_list_exists in H1.
destruct H1 as [k [Hk p]].
exists k.
exact p.
Defined.

(** An upper bound on witnesses of a decidable predicate makes the sigma type decidable. *)
Definition decidable_exists_nat (n : nat) (P : nat -> Type)
(H1 : forall k, P k -> (k < n)%nat)
(H2 : forall k, Decidable (P k))
: Decidable (exists k, P k).
Proof.
nrapply decidable_iff.
1: apply iff_inverse; nrapply list_exists_seq.
1: exact H1.
exact _.
Defined.
9 changes: 9 additions & 0 deletions theories/Spaces/Nat/Core.v
Original file line number Diff line number Diff line change
Expand Up @@ -487,6 +487,14 @@ Global Instance antisymmetric_leq : AntiSymmetric leq := @leq_antisym.
Global Instance antisymemtric_geq : AntiSymmetric geq
:= fun _ _ p q => leq_antisym q p.

(** Every natural number is zero or greater than zero. *)
Definition nat_zero_or_gt_zero n : (0 = n) + (0 < n).
Proof.
induction n as [|n IHn].
1: left; reflexivity.
right; exact _.
Defined.

(** Being less than or equal to [0] implies being [0]. *)
Definition path_zero_leq_zero_r n : n <= 0 -> n = 0.
Proof.
Expand Down Expand Up @@ -590,6 +598,7 @@ Hint Immediate leq_lt : typeclass_instances.

Definition lt_trans {n m k} : n < m -> m < k -> n < k
:= fun H1 H2 => leq_lt (lt_leq_lt_trans H1 H2).
Hint Immediate lt_trans : typeclass_instances.

Global Instance transitive_lt : Transitive lt := @lt_trans.
Global Instance ishprop_lt n m : IsHProp (n < m) := _.
Expand Down
Loading
Loading