This is the repository which can generate the YOLO11 model running on WE2. Currently only support YOLO11 object detection task.
You can choose to install it on your local PC or open it on Colab.
- The package has been tested in Ubuntu 20.04 LTS environment.
git clone https://github.com/HimaxWiseEyePlus/YOLO11_on_WE2
cd YOLO11_on_WE2
sudo apt install python3.10-dev
python3.10 -m venv --without-pip env_yolo11
wget https://bootstrap.pypa.io/get-pip.py
source 'env_yolo11/bin/activate'
which python
python --version
which pip
python get-pip.py
###tensorflow-cpu or tensorflow
pip install tensorflow-cpu
source 'env_yolo11/bin/activate'
git clone https://github.com/kris-himax/ultralytics
cd ultralytics
pip install .
cd ..
- convert to the yolo11n tflite
without post-proccessing
, you should remember to setno_post=True
- convert to the
full
yolo11n tflite, you should remember to setno_post=False
python examples/convert_tflite.py
pip install ethos-u-vela
wget https://raw.githubusercontent.com/HimaxWiseEyePlus/ML_FVP_EVALUATION/main/vela/himax_vela.ini
vela --accelerator-config ethos-u55-64 --config himax_vela.ini --system-config My_Sys_Cfg --memory-mode My_Mem_Mode_Parent --output-dir ./ ./[your path about yolo11n full integer quant tflite file]
###for example
vela --accelerator-config ethos-u55-64 --config himax_vela.ini --system-config My_Sys_Cfg --memory-mode My_Mem_Mode_Parent --output-dir ./ ./yolo11n_saved_model/yolo11n_full_integer_quant.tflite
- The output int8 vela tflite model which you can open by netron.
- You can reference here to put the Yolo11n object detection on WE2.
Export YOLO11n int8 tflite by pretrained weight yolo11n.pt
- You can also replace the
*.pt
file by your own file. - You can export original yolo11n int8 tflite with BatchMatMul Operater by
0.a
and skip0.b
. - You can export yolo11n int8 tflite with BatchMatMul Operater without post-proccessing by
0.b
withno_post=True
.
- You can reference here to put the Yolo11n object detection on WE2.