Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

⬆️ Bump transformers from 4.39.3 to 4.42.1 #93

Open
wants to merge 1 commit into
base: main
Choose a base branch
from

Conversation

dependabot[bot]
Copy link

@dependabot dependabot bot commented on behalf of github Jun 28, 2024

Bumps transformers from 4.39.3 to 4.42.1.

Release notes

Sourced from transformers's releases.

v4.42.1: Patch release

Patch release for commit:

  • [HybridCache] Fix get_seq_length method (#31661)

v4.42.0: Gemma 2, RTDETR, InstructBLIP, LLAVa Next, New Model Adder

New model additions

Gemma-2

The Gemma2 model was proposed in Gemma2: Open Models Based on Gemini Technology and Research by Gemma2 Team, Google. Gemma2 models are trained on 6T tokens, and released with 2 versions, 2b and 7b.

The abstract from the paper is the following:

This work introduces Gemma2, a new family of open language models demonstrating strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma2 outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of our model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations

image

RTDETR

The RT-DETR model was proposed in DETRs Beat YOLOs on Real-time Object Detection by Wenyu Lv, Yian Zhao, Shangliang Xu, Jinman Wei, Guanzhong Wang, Cheng Cui, Yuning Du, Qingqing Dang, Yi Liu.

RT-DETR is an object detection model that stands for “Real-Time DEtection Transformer.” This model is designed to perform object detection tasks with a focus on achieving real-time performance while maintaining high accuracy. Leveraging the transformer architecture, which has gained significant popularity in various fields of deep learning, RT-DETR processes images to identify and locate multiple objects within them.

image

InstructBlip

The InstructBLIP model was proposed in InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. InstructBLIP leverages the BLIP-2 architecture for visual instruction tuning.

InstructBLIP uses the same architecture as BLIP-2 with a tiny but important difference: it also feeds the text prompt (instruction) to the Q-Former.

image

LlaVa NeXT Video

The LLaVa-NeXT-Video model was proposed in LLaVA-NeXT: A Strong Zero-shot Video Understanding Model by Yuanhan Zhang, Bo Li, Haotian Liu, Yong Jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, Chunyuan Li. LLaVa-NeXT-Video improves upon LLaVa-NeXT by fine-tuning on a mix if video and image dataset thus increasing the model’s performance on videos.

LLaVA-NeXT surprisingly has strong performance in understanding video content in zero-shot fashion with the AnyRes technique that it uses. The AnyRes technique naturally represents a high-resolution image into multiple images. This technique is naturally generalizable to represent videos because videos can be considered as a set of frames (similar to a set of images in LLaVa-NeXT). The current version of LLaVA-NeXT makes use of AnyRes and trains with supervised fine-tuning (SFT) on top of LLaVA-Next on video data to achieves better video understanding capabilities.The model is a current SOTA among open-source models on VideoMME bench.

New model adder

... (truncated)

Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Bumps [transformers](https://github.com/huggingface/transformers) from 4.39.3 to 4.42.1.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](huggingface/transformers@v4.39.3...v4.42.1)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <[email protected]>
@dependabot dependabot bot added dependencies Pull requests that update a dependency file python Pull requests that update Python code labels Jun 28, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file python Pull requests that update Python code
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants