-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added batch-correction and data details to worked metabo example md
- Loading branch information
Showing
2 changed files
with
260 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,249 @@ | ||
library(BatchCorrMetabolomics) | ||
data(BC) | ||
|
||
set.3.lod <- min(set.3[!is.na(set.3)]) | ||
minBatchOccurrence.Ave <- 2 | ||
minBatchOccurrence.Line <- 4 | ||
|
||
|
||
TOF.ngenotypes <- nlevels(set.3.Y$SCode)-1 ## take away the ref samples | ||
TOF.nNA <- apply(set.3, 2, function(x) sum(is.na(x))) | ||
TOF.nref <- sum(set.3.Y$SCode == "ref") | ||
|
||
|
||
conditions <- c("", "0", "1", "2", "c") | ||
experiments <- c(t(outer(c("Q", "S"), conditions, paste, sep = ""))) | ||
methods <- rep("lm", length(experiments)) | ||
methods[grep("c", experiments)] <- "tobit" | ||
imputeValues <- rep(NA, length(experiments)) | ||
imputeValues[grep("0", experiments)] <- 0 | ||
imputeValues[grep("1", experiments)] <- set.3.lod / 2 | ||
imputeValues[grep("2", experiments)] <- set.3.lod | ||
imputeValues[grep("c", experiments)] <- set.3.lod - .01 | ||
refSamples <- list("Q" = which(set.3.Y$SCode == "ref"), | ||
"S" = which(set.3.Y$SCode != "ref")) | ||
strategies <- rep(c("Q", "S"), each = length(conditions)) | ||
|
||
## leave out the censored regressions for A | ||
exp.idx <- (1:length(experiments))[-grep("c", experiments)] | ||
suppressMessages(allResultsAve <- | ||
lapply(exp.idx, | ||
function(ii) | ||
apply(set.3, 2, doBC, | ||
ref.idx = refSamples[[ strategies[[ii]] ]], | ||
batch.idx = set.3.Y$Batch, | ||
minBsamp = minBatchOccurrence.Ave, | ||
correctionFormula = formula("X ~ B"), | ||
seq.idx = set.3.Y$SeqNr, | ||
method = methods[ii], | ||
imputeVal = imputeValues[ii]))) | ||
names(allResultsAve) <- experiments[exp.idx] | ||
|
||
suppressMessages(allResultsLine <- | ||
lapply(seq(along = experiments), | ||
function(ii) | ||
apply(set.3, 2, doBC, | ||
ref.idx = refSamples[[ strategies[[ii]] ]], | ||
batch.idx = set.3.Y$Batch, | ||
minBsamp = minBatchOccurrence.Line, | ||
seq.idx = set.3.Y$SeqNr, | ||
method = methods[ii], | ||
imputeVal = imputeValues[ii]))) | ||
names(allResultsLine) <- experiments | ||
|
||
library("RUVSeq") | ||
|
||
idx <- which(set.3.Y$SCode == "ref") | ||
replicates.ind <- matrix(-1, nrow(set.3) - length(idx) + 1, length(idx)) | ||
replicates.ind[1,] <- idx | ||
replicates.ind[-1,1] <- (1:nrow(set.3))[-idx] | ||
|
||
allResultsRUV <- | ||
lapply(0:2, | ||
function(ImpVal) { | ||
huhn <- set.3 | ||
huhn[is.na(huhn)] <- ImpVal * set.3.lod / 2 | ||
woppa <- t(RUVs(t(huhn), | ||
1:ncol(huhn), | ||
k = 3, | ||
replicates.ind, | ||
round = FALSE, isLog = TRUE)$normalizedCounts) | ||
woppa[is.na(set.3)] <- NA | ||
woppa | ||
}) | ||
|
||
|
||
# figure 2 | ||
|
||
par(mfrow = c(1,1)) | ||
huhnPCA <- evaluateCorrection(set.3, set.3.Y, what = "PCA", | ||
plot = TRUE, legend.loc = "bottomright") | ||
title(main = paste("Uncorrected Interbatch Distance:", round(huhnPCA, 3))) | ||
|
||
huhnPCA.A <- evaluateCorrection(allResultsAve[["Q"]], set.3.Y, what = "PCA", | ||
plot = TRUE, legend.loc = "bottomright") | ||
title(main = paste("Corrected Interbatch Distance:", round(huhnPCA.A, 3))) | ||
|
||
# huhnPCA.A <- evaluateCorrection(allResultsAve[["Q0"]], set.3.Y, what = "PCA", | ||
# plot = TRUE, legend.loc = "bottomright") | ||
# title(main = paste("Q0: Interbatch distance:", round(huhnPCA.A, 3))) | ||
|
||
|
||
|
||
results.ave <- results.line <- matrix(NA, length(experiments) + 1, 2) | ||
dimnames(results.line) <- dimnames(results.ave) <- | ||
list(c("No correction", experiments), c("PCA", "duplo")) | ||
|
||
results.line[1,1] <- results.ave[1,1] <- | ||
evaluateCorrection(set.3, set.3.Y, what = "PCA", plot = FALSE) | ||
results.line[1,2] <- results.ave[1,2] <- | ||
evaluateCorrection(set.3, set.3.Y, what = "duplo", plot = FALSE) | ||
|
||
for (exp in experiments[exp.idx]) { | ||
x <- allResultsAve[[exp]] | ||
woppa <- set.3 | ||
woppa[!is.na(x)] <- x[!is.na(x)] | ||
results.ave[exp, 1] <- | ||
evaluateCorrection(woppa, set.3.Y, "PCA", plot = FALSE) | ||
results.ave[exp, 2] <- | ||
evaluateCorrection(woppa, set.3.Y, "duplo", plot = FALSE) | ||
} | ||
|
||
for (exp in experiments) { | ||
x <- allResultsLine[[exp]] | ||
woppa <- set.3 | ||
woppa[!is.na(x)] <- x[!is.na(x)] | ||
results.line[exp, 1] <- | ||
evaluateCorrection(woppa, set.3.Y, "PCA", plot = FALSE) | ||
results.line[exp, 2] <- | ||
evaluateCorrection(woppa, set.3.Y, "duplo", plot = FALSE) | ||
} | ||
|
||
results.ruv <- | ||
cbind(sapply(allResultsRUV, | ||
evaluateCorrection, set.3.Y, | ||
what = "PCA", plot = FALSE), | ||
sapply(allResultsRUV, | ||
evaluateCorrection, set.3.Y, | ||
what = "duplo", plot = FALSE)) | ||
dimnames(results.ruv) <- list(paste("R", 0:2, sep = ""), | ||
c("PCA", "duplo")) | ||
|
||
# figure 6 | ||
floodresults.ave <- rbind(results.ave, results.ruv) | ||
floodresults.ave.label <- factor(substr(rownames(floodresults.ave), 1, 1)) | ||
floodresults.line <- rbind(results.line, results.ruv) | ||
floodresults.line.label <- factor(substr(rownames(floodresults.line), 1, 1)) | ||
PCA.range <- range(c(floodresults.ave[,1], floodresults.line[,1]), | ||
na.rm = TRUE) | ||
duplo.range <- range(c(floodresults.ave[,2], floodresults.line[,2]), | ||
na.rm = TRUE) | ||
par(mfrow = c(1,1)) | ||
plot(floodresults.ave[,1], floodresults.ave[,2], | ||
main = "Data set III - only batch correction", | ||
ylab= "Repeatability", xlab = "Interbatch distance", | ||
xlim = PCA.range, ylim = duplo.range, | ||
col = as.integer(floodresults.ave.label)) | ||
text(floodresults.ave[,1], floodresults.ave[,2], | ||
pos = ifelse(floodresults.ave.label == "N", 2, 4), | ||
col = as.integer(floodresults.ave.label), | ||
labels = rownames(floodresults.ave)) | ||
|
||
plot(floodresults.line[,1], floodresults.line[,2], | ||
main = "Data set III - batch and order correction", | ||
xlim = PCA.range, ylim = duplo.range, | ||
ylab= "Repeatability", xlab = "Interbatch distance", | ||
col = as.integer(floodresults.line.label)) | ||
text(floodresults.line[,1], floodresults.line[,2], | ||
pos = ifelse(floodresults.line.label %in% c("N", "Q"), 2, 4), | ||
col = as.integer(floodresults.line.label), | ||
labels = rownames(floodresults.line)) | ||
|
||
|
||
# log peak area mean | ||
library("dplyr") | ||
library("ggplot2") | ||
|
||
raw <- data.frame(set.3) | ||
#corrected <- data.frame(allResultsAve[["Q"]]) | ||
corrected <- data.frame(allResultsRUV[[0]]) | ||
row.names(corrected) <- row.names(raw) | ||
|
||
raw[is.na(raw)] <- 0 | ||
corrected[is.na(corrected)] <- 0 | ||
|
||
raw['mean'] <- apply(raw, 1, mean) | ||
corrected['mean'] <- apply(corrected, 1, mean) | ||
raw_plus_meta <- merge(raw, set.3.Y, by="row.names", all=TRUE) | ||
corrected_plus_meta <- merge(corrected, set.3.Y, by="row.names", all=TRUE) | ||
|
||
plot_areas_batchwise<- function(df,title) { | ||
gm = mean(df$mean) | ||
ggplot() + | ||
geom_point(data=df, mapping=aes(x=SeqNr, y=mean, color=Batch)) + | ||
xlab("injection order") + ylab("log mean peak area") + ggtitle(title) + | ||
geom_hline(yintercept=gm, linetype="dashed", color = "black") + | ||
stat_smooth(method="lm", formula=y~1, se=FALSE) | ||
} | ||
|
||
plot_areas_batchwise(raw_plus_meta,"Raw") | ||
plot_areas_batchwise(corrected_plus_meta,"Corrected") | ||
|
||
raw_refs <- raw_plus_meta[ which(raw_plus_meta$SCode=='ref'),] | ||
raw_samples <- raw_plus_meta[ which(raw_plus_meta$SCode!='ref'),] | ||
corrected_refs <- corrected_plus_meta[ which(corrected_plus_meta$SCode=='ref'),] | ||
corrected_samples <- corrected_plus_meta[ which(corrected_plus_meta$SCode!='ref'),] | ||
|
||
plot_areas_batchwise(raw_refs,"raw refs") | ||
plot_areas_batchwise(corrected_refs,"corrected refs") | ||
plot_areas_batchwise(raw_samples,"raw samples") | ||
plot_areas_batchwise(corrected_samples,"corrected samples") | ||
|
||
|
||
|
||
raw_plus_meta$Batch <- as.character(raw_plus_meta$Batch) | ||
raw_plus_meta[ which(raw_plus_meta$SCode=='ref'),]$Batch = "QC" | ||
raw_plus_meta$Batch <- as.factor(raw_plus_meta$Batch) | ||
|
||
corrected_plus_meta$Batch <- as.character(corrected_plus_meta$Batch) | ||
corrected_plus_meta[ which(corrected_plus_meta$SCode=='ref'),]$Batch = "QC" | ||
corrected_plus_meta$Batch <- as.factor(corrected_plus_meta$Batch) | ||
|
||
plot_areas_batchwise(raw_plus_meta,"raw") | ||
plot_areas_batchwise(corrected_plus_meta,"corrected") | ||
|
||
|
||
getPCA <- function(X, Y, GRAPH) | ||
{ | ||
nbatches <- nlevels(Y$Batch) | ||
noref.idx <- which(Y$SCode != "ref") | ||
Xsample <- X[noref.idx,] | ||
YSample <- Y[noref.idx,] | ||
|
||
Xsample <- Xsample[, apply(Xsample, 2, function(x) !all(is.na(x)))] | ||
|
||
## replace NA values with column means | ||
for (i in 1:ncol(Xsample)) | ||
Xsample[is.na(Xsample[,i]),i] <- mean(Xsample[,i], na.rm = TRUE) | ||
|
||
Xsample <- Xsample[, apply(Xsample, 2, sd, na.rm = TRUE) > 0] | ||
## Original is using ChemometricsWithR which reports an unintelligible result object, hence switching to something well maintained to get the PCA scores | ||
X.PCA <- FactoMineR::PCA(Xsample, scale.unit = TRUE, graph=GRAPH) | ||
|
||
return (X.PCA) | ||
|
||
} | ||
|
||
|
||
|
||
set3.uncorrected.PCA <- getPCA(set.3, set.3.Y,GRAPH = FALSE) | ||
set3.uncorrected.PCAscores <- data.frame(set3.uncorrected.PCA$ind$coord) | ||
set3.uncorrected.PCAscores <- merge(set3.uncorrected.PCAscores, set.3.Y, by="row.names", all=TRUE) | ||
write.csv(set3.uncorrected.PCAscores,"set3.uncorrected.PCA.csv", row.names = TRUE) | ||
|
||
set3.corrected.PCA <- getPCA(corrected, set.3.Y,GRAPH = FALSE) | ||
set3.corrected.PCAscores <- data.frame(set3.corrected.PCA$ind$coord) | ||
set3.corrected.PCAscores <- merge(set3.corrected.PCAscores, set.3.Y, by="row.names", all=TRUE) | ||
write.csv(set3.corrected.PCAscores,"set3.corrected.PCA.csv", row.names = TRUE) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters