Skip to content

Commit

Permalink
Merge pull request #539 from ShanGor/main
Browse files Browse the repository at this point in the history
Added PostgreSQL implementation
  • Loading branch information
LarFii authored Jan 4, 2025
2 parents fb41458 + 6c1b669 commit 6b5f475
Show file tree
Hide file tree
Showing 5 changed files with 1,452 additions and 13 deletions.
114 changes: 114 additions & 0 deletions examples/lightrag_zhipu_postgres_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
import asyncio
import logging
import os
import time
from dotenv import load_dotenv

from lightrag import LightRAG, QueryParam
from lightrag.kg.postgres_impl import PostgreSQLDB
from lightrag.llm import ollama_embedding, zhipu_complete
from lightrag.utils import EmbeddingFunc

load_dotenv()
ROOT_DIR = os.environ.get("ROOT_DIR")
WORKING_DIR = f"{ROOT_DIR}/dickens-pg"

logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)

if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)

# AGE
os.environ["AGE_GRAPH_NAME"] = "dickens"

postgres_db = PostgreSQLDB(
config={
"host": "localhost",
"port": 15432,
"user": "rag",
"password": "rag",
"database": "rag",
}
)


async def main():
await postgres_db.initdb()
# Check if PostgreSQL DB tables exist, if not, tables will be created
await postgres_db.check_tables()

rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=zhipu_complete,
llm_model_name="glm-4-flashx",
llm_model_max_async=4,
llm_model_max_token_size=32768,
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
),
),
kv_storage="PGKVStorage",
doc_status_storage="PGDocStatusStorage",
graph_storage="PGGraphStorage",
vector_storage="PGVectorStorage",
)
# Set the KV/vector/graph storage's `db` property, so all operation will use same connection pool
rag.doc_status.db = postgres_db
rag.full_docs.db = postgres_db
rag.text_chunks.db = postgres_db
rag.llm_response_cache.db = postgres_db
rag.key_string_value_json_storage_cls.db = postgres_db
rag.chunks_vdb.db = postgres_db
rag.relationships_vdb.db = postgres_db
rag.entities_vdb.db = postgres_db
rag.graph_storage_cls.db = postgres_db
rag.chunk_entity_relation_graph.db = postgres_db
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func

with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())

print("==== Trying to test the rag queries ====")
print("**** Start Naive Query ****")
start_time = time.time()
# Perform naive search
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
print(f"Naive Query Time: {time.time() - start_time} seconds")
# Perform local search
print("**** Start Local Query ****")
start_time = time.time()
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
print(f"Local Query Time: {time.time() - start_time} seconds")
# Perform global search
print("**** Start Global Query ****")
start_time = time.time()
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
print(f"Global Query Time: {time.time() - start_time}")
# Perform hybrid search
print("**** Start Hybrid Query ****")
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
print(f"Hybrid Query Time: {time.time() - start_time} seconds")


if __name__ == "__main__":
asyncio.run(main())
Loading

0 comments on commit 6b5f475

Please sign in to comment.