-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #452 from Weaxs/main
support TiDB: add TiDBKVStorage, TiDBVectorDBStorage
- Loading branch information
Showing
4 changed files
with
589 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
import asyncio | ||
import os | ||
|
||
import numpy as np | ||
|
||
from lightrag import LightRAG, QueryParam | ||
from lightrag.kg.tidb_impl import TiDB | ||
from lightrag.llm import siliconcloud_embedding, openai_complete_if_cache | ||
from lightrag.utils import EmbeddingFunc | ||
|
||
WORKING_DIR = "./dickens" | ||
|
||
# We use SiliconCloud API to call LLM on Oracle Cloud | ||
# More docs here https://docs.siliconflow.cn/introduction | ||
BASE_URL = "https://api.siliconflow.cn/v1/" | ||
APIKEY = "" | ||
CHATMODEL = "" | ||
EMBEDMODEL = "" | ||
|
||
TIDB_HOST = "" | ||
TIDB_PORT = "" | ||
TIDB_USER = "" | ||
TIDB_PASSWORD = "" | ||
TIDB_DATABASE = "" | ||
|
||
|
||
if not os.path.exists(WORKING_DIR): | ||
os.mkdir(WORKING_DIR) | ||
|
||
|
||
async def llm_model_func( | ||
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs | ||
) -> str: | ||
return await openai_complete_if_cache( | ||
CHATMODEL, | ||
prompt, | ||
system_prompt=system_prompt, | ||
history_messages=history_messages, | ||
api_key=APIKEY, | ||
base_url=BASE_URL, | ||
**kwargs, | ||
) | ||
|
||
|
||
async def embedding_func(texts: list[str]) -> np.ndarray: | ||
return await siliconcloud_embedding( | ||
texts, | ||
# model=EMBEDMODEL, | ||
api_key=APIKEY, | ||
) | ||
|
||
|
||
async def get_embedding_dim(): | ||
test_text = ["This is a test sentence."] | ||
embedding = await embedding_func(test_text) | ||
embedding_dim = embedding.shape[1] | ||
return embedding_dim | ||
|
||
|
||
async def main(): | ||
try: | ||
# Detect embedding dimension | ||
embedding_dimension = await get_embedding_dim() | ||
print(f"Detected embedding dimension: {embedding_dimension}") | ||
|
||
# Create TiDB DB connection | ||
tidb = TiDB( | ||
config={ | ||
"host": TIDB_HOST, | ||
"port": TIDB_PORT, | ||
"user": TIDB_USER, | ||
"password": TIDB_PASSWORD, | ||
"database": TIDB_DATABASE, | ||
"workspace": "company", # specify which docs you want to store and query | ||
} | ||
) | ||
|
||
# Check if TiDB DB tables exist, if not, tables will be created | ||
await tidb.check_tables() | ||
|
||
# Initialize LightRAG | ||
# We use TiDB DB as the KV/vector | ||
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt | ||
rag = LightRAG( | ||
enable_llm_cache=False, | ||
working_dir=WORKING_DIR, | ||
chunk_token_size=512, | ||
llm_model_func=llm_model_func, | ||
embedding_func=EmbeddingFunc( | ||
embedding_dim=embedding_dimension, | ||
max_token_size=512, | ||
func=embedding_func, | ||
), | ||
kv_storage="TiDBKVStorage", | ||
vector_storage="TiDBVectorDBStorage", | ||
) | ||
|
||
if rag.llm_response_cache: | ||
rag.llm_response_cache.db = tidb | ||
rag.full_docs.db = tidb | ||
rag.text_chunks.db = tidb | ||
rag.entities_vdb.db = tidb | ||
rag.relationships_vdb.db = tidb | ||
rag.chunks_vdb.db = tidb | ||
|
||
# Extract and Insert into LightRAG storage | ||
with open("./dickens/demo.txt", "r", encoding="utf-8") as f: | ||
await rag.ainsert(f.read()) | ||
|
||
# Perform search in different modes | ||
modes = ["naive", "local", "global", "hybrid"] | ||
for mode in modes: | ||
print("=" * 20, mode, "=" * 20) | ||
print( | ||
await rag.aquery( | ||
"What are the top themes in this story?", | ||
param=QueryParam(mode=mode), | ||
) | ||
) | ||
print("-" * 100, "\n") | ||
|
||
except Exception as e: | ||
print(f"An error occurred: {e}") | ||
|
||
|
||
if __name__ == "__main__": | ||
asyncio.run(main()) |
Oops, something went wrong.