- This GitHub repo is the implementation of "SCONE: A Food Scooping Robot Learning Framework with Active Perception" in CoRL 2023. [openreview] [website]
- Linux (Teseted on Ubuntu 18.04)
- Python 3 (Tested on Python 3.7)
- Torch (Tested on Torch 1.9.1)
- Cuda (Tested on Cuda 11.4)
- GPU (Tested on Nvidia RTX3090)
- CPU (Tested on Intel COre i7-10700)
- Clone This Repo
$ git clone https://github.com/HCIS-Lab/SCONE.git
- Create Conda Environment
$ cd SCONE
$ conda create -n scone python=3.7
$ conda activate scone
- Install needed package.
- Please check the website to install pytorch according to your local device.
- Run pip install -r requirements.txt to install other package.
$ pip install -r requirements.txt
Check config file to adjust other parameters.
python3 train.py --dataset <data_root>
- Upload raw & processed dataset
- Complete the Class FoodDataset in load_data.py
@inproceedings{tai2023scone,
title={SCONE: A Food Scooping Robot Learning Framework with Active Perception},
author={Tai, Yen-Ling and Chiu, Yu Chien and Chao, Yu-Wei and Chen, Yi-Ting},
booktitle={7th Annual Conference on Robot Learning},
year={2023}
}