BeSyft is a tool for symbolic best-effort synthesis with LTLf goals and assumptions. The tool has been described in [1].
The output of BeSyft --help
is the following:
BeSyft: a tool for Reactive and Best-Effort Synthesis with LTLf Goals and Assumptions
Usage: ./BeSyft [OPTIONS]
Options:
-h,--help Print this help message and exit
-d,--print-dot Print the output function(s)
-c,--dominance-check Performs the dominance check
-i,--interactive Executes the synthesized strategy in interactive mode
-a,--agent-file TEXT:FILE REQUIRED
File to agent specification
-e,--environment-file TEXT:FILE REQUIRED
File to environment assumption
-p,--partition-file TEXT:FILE REQUIRED
File to partition
-s,--starting-player INT REQUIRED
Starting player:
agent=1;
environment=0.
-t,--algorithm INT REQUIRED Specifies algorithm to use:
Direct Best-Effort Synthesis=1;
Compositional-Minimal Best-Effort Synthesis=2;
Compositional Best-Effort Synthesis=3;
Compositional-Minimal Reactive Synthesis=4
Compositional Reactive Synthesis=5
-f,--save-results TEXT If specified, save results in the passed file. Stores:
Algorithm;
Goal file;
Environment file;
Starting player;
LTLf2DFA (s);
DFA2Sym (s);
Adv Game (s);
Coop Game (s); #best-effort synthesis algorithms only
Dominance Test (s); # best-effort synthesis algorithms only with -c option
Run time(s);
Realizability;
Dominance; #best-effort synthesis algorithms only with -c option
LTLf formulas in agent and environment files should be written in Lydia's syntax. For further details, refer to https://github.com/whitemech/lydia .
To perform best-effort synthesis for an LTLf goal in some LTLf environment, you have to provide both the path to the agent goal and the environment specification, e.g., counter_2.ltlf
and add_request.ltlf
, and the path to the partition file, e.g., counter_2.part
(see the Examples
folder).
For instance, the command:
./BeSyft -a counter_2.ltlf -e add_request.ltlf -p counter_2.part -s 1 -t 3 -c -i
Performs best-effort synthesis using the compositional algorithm, checks the existence of a dominant strategy, and executes the synthesized strategy in interactive mode.
Compilation instruction using CMake (https://cmake.org/). We recommend the use of Ubuntu 20.04 LTS. Problems can occur between some libraries on which BeSyft relies and newer versions of Ubuntu (more information below).
The project uses Flex and Bison for parsing purposes.
First check that you have them: whereis flex bison
If no item occurs, then you have to install them: sudo apt-get install -f flex bison
The project depends on CUDD 3.0.0. To install it, run the following commands
wget https://github.com/whitemech/cudd/releases/download/v3.0.0/cudd_3.0.0_linux-amd64.tar.gz
tar -xf cudd_3.0.0_linux-amd64.tar.gz
cd cudd_3.0.0_linux-amd64
sudo cp -P lib/* /usr/local/lib/
sudo cp -Pr include/* /usr/local/include/
Otherwise, build from source (customize PREFIX
variable as you see fit).
git clone https://github.com/whitemech/cudd && cd cudd
PREFIX="/usr/local"
./configure --enable-silent-rules --enable-obj --enable-dddmp --prefix=$PREFIX
sudo make install
If you get an error about aclocal, this might be due to either
- Not having automake:
sudo apt-get install automake
- Needing to reconfigure, do this before
configuring: autoreconf -i
- Using a version of aclocal other than 1.14: modify the version 1.14 in configure accordingly.
The projects depends on the MONA library, version v1.4 (patch 19). We require that the library is compiled with different values for parameters such as MAX_VARIABLES
, and BDD_MAX_TOTAL_TABLE_SIZE
(you can have a look at the details at https://github.com/whitemech/MONA/releases/tag/v1.4-19.dev0).
To install the MONA library, run the following commands:
wget https://github.com/whitemech/MONA/releases/download/v1.4-19.dev0/mona_1.4-19.dev0_linux-amd64.tar.gz
tar -xf mona_1.4-19.dev0_linux-amd64.tar.gz
cd mona_1.4-19.dev0_linux-amd64
sudo cp -P lib/* /usr/local/lib/
sudo cp -Pr include/* /usr/local/include
The project relies on SPOT (https://spot.lre.epita.fr/). To install it, follows the instructions at https://spot.lre.epita.fr/install.html
The project uses Graphviz to display automata and strategies. Follow the install instructions on the official website: https://graphviz.gitlab.io/download/.
On Ubuntu, this should work:
sudo apt-get install libgraphviz-dev
BeSyft depends on Syft. First, install the Boost libraries.
sudo apt-get install libboost-dev-all
For further information see https://www.boost.org/
Install Syft with
git clone https://github.com/whitemech/Syft.git
cd Syft
git checkout v0.1.1
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make -j
sudo make install
Unzip the repository and move into it cd BeSyft
Clone Lydia within the submodules folder.
mkdir submodules
cd submodules
git clone https://github.com/whitemech/lydia.git --recursive
NOTE: Users of Ubuntu 22.04 LTS might encounter compilation errors due to incompatibilities Lydia's Catch2 library and newer versions of Ubuntu. To address it, take the following steps
I. Go to https://github.com/catchorg/Catch2/tree/v2.x and get the .zip file.
II. unzip the file.
III. substitute in repository submodules/lydia/third_party/Catch2
with the unzipped folder of Catch2.
IV. delete any CMakeCache.txt file which may have been generated by previous compilation processes.
To build, run the following commands.
cd ..
mkdir build && cd build
cmake ..
make -j2
To plot the results of our experiments on counter games execute:
cd EmpiricalResults/CounterGames
python3 besyft_comparison.py
python3 besyft_vs_syft.py
python3 relative_time_cost.py
To plot the results of our experiments on random conjunction benchmarks execute
cd EmpiricalResults/Random
python3 random_benchmarks.py
Else, to execute your own experiments on counter games run sudo chmod "u+x" run-counters.sh run-random.sh
Then run: ./run-counters.sh
or ./run-random.sh
To plot results on counter games execute:
cd Benchmarks/CounterGames
python3 besyft_comparison.py
python3 besyft_vs_syft.py
python3 relative_time_cost.py
To plot results on random conjunction benchmarks:
cd Benchmarks/Random
python3 random_benchmarks.py
For any question, feedback, or suggestion, please reach to: [email protected]
[1] De Giacomo, Giuseppe; Parretti, Gianmarco; and Zhu, Shufang 2023. Symbolic LTLf Best-Effort Synthesis. In European Conference on Multi-Agent Systems (EUMAS). Cham: Springer Nature Switzerland, 2023. p. 228-243.