Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] discrepancy in SCHC; improve bound_variable and min_bound arguments #27

Merged
merged 3 commits into from
Jan 25, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -12,3 +12,5 @@ temp/
test.ipynb
.ipynb_checkpoints/
Untitled.ipynb
wheelhouse/
.venv/
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ lisa = pygeoda.local_moran(w, gda['Crm_prs'])
```


## Current version 0.0.8
## Current version 0.1.0

* Spatial Weights
* Queen
Expand Down
2 changes: 1 addition & 1 deletion libgeoda
13 changes: 10 additions & 3 deletions pygeoda/clustering/azp.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ def azp_greedy(p, w, data, **kwargs):
p (int): The number of spatially constrained clusters
w (Weight): an instance of Weight class
data (tuple): A list of numeric vectors of selected variable
bound_variable (tuple, optional): A numeric vector of selected bounding variable
bound_variable (tuple or pandas.core.series.Series, optional): A numeric vector of selected bounding variable
min_bound (float, optional): A minimum value that the sum value of bounding variable int each cluster should be greater than
inits (int, optional): The number of construction re-runs, which is for ARiSeL "automatic regionalization with initial seed location"
init_regions (tuple, optional): The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters
Expand Down Expand Up @@ -49,11 +49,18 @@ def azp_greedy(p, w, data, **kwargs):
if len(data) < 1:
raise ValueError("The data from selected variable is empty.")

in_data = VecVecDouble()

# check if bound_variable is pandas.core.series.Series, if so, convert to list
if type(bound_variable).__name__ == "Series":
bound_variable = bound_variable.values.tolist()

# if bound_variable is not empty, check if it has the same length as the number of observations
if len(bound_variable) > 0 and len(bound_variable) != w.num_obs:
raise ValueError("The bound_variable has to be a list of numeric values, e.g. a column of input table.")

if type(data).__name__ == "DataFrame":
data = data.values.transpose().tolist()

in_data = VecVecDouble()
for d in data:
in_data.push_back(d)

Expand Down
11 changes: 7 additions & 4 deletions pygeoda/clustering/maxp.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ def maxp_greedy(w, data, bound_variable, min_bound, **kwargs):
Arguments:
w (Weight): an instance of Weight class
data (list or dataframe): A list of numeric vectors of selected variable or a data frame of selected variables e.g. guerry[['Crm_prs', 'Literacy']]
bound_variable (tuple): A numeric vector of selected bounding variable
bound_variable (tuple or pandas.core.series.Series, optional): A numeric vector of selected bounding variable
min_bound (float): A minimum value that the sum value of bounding variable int each cluster should be greater than
iterations (int, optional): The number of iterations of greedy algorithm. Defaults to 99.
init_regions (tuple, optional): The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters
Expand All @@ -43,17 +43,20 @@ def maxp_greedy(w, data, bound_variable, min_bound, **kwargs):
if len(data) < 1:
raise ValueError("The data from selected variable is empty.")

# check if bound_variable is pandas.core.series.Series, if so, convert to list
if type(bound_variable).__name__ == "Series":
bound_variable = bound_variable.values.tolist()

if len(bound_variable) != w.num_obs:
raise ValueError("The bound_variable has to be a list of numeric values, e.g. a column of input table.")

if min_bound <= 0:
raise ValueError("The min_bound has to be a positive numeric value.")

in_data = VecVecDouble()

if type(data).__name__ == "DataFrame":
data = data.values.transpose().tolist()


in_data = VecVecDouble()
for d in data:
in_data.push_back(d)

Expand Down
19 changes: 15 additions & 4 deletions pygeoda/clustering/redcap.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def redcap(k, w, data, method, **kwargs):
k (int): number of clusters
w (Weight): An instance of Weight class
data (list or dataframe): A list of numeric vectors of selected variable or a data frame of selected variables e.g. guerry[['Crm_prs', 'Literacy']]
bound_variable (tuple, optional): A numeric vector of selected bounding variable
bound_variable (tuple or pandas.core.series.Series, optional): A numeric vector of selected bounding variable
min_bound (float, optional): a minimum value that the sum value of bounding variable int each cluster should be greater than
scale_method (str, optional): One of the scaling methods {'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust'} to apply on input data. Default is 'standardize' (Z-score normalization).
distance_method (str, optional): {"euclidean", "manhattan"} the distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan"
Expand All @@ -42,14 +42,25 @@ def redcap(k, w, data, method, **kwargs):
if method not in ['firstorder-singlelinkage', 'fullorder-singlelinkage', 'fullorder-averagelinkage', 'fullorder-completelinkage', 'fullorder-wardlinkage']:
raise ValueError('The method has to be one of {"firstorder-singlelinkage", "fullorder-completelinkage", "fullorder-averagelinkage","fullorder-singlelinkage", "fullorder-wardlinkage"}')

in_data = VecVecDouble()

# check if bound_variable is pandas.core.series.Series, if so, convert to list
if type(bound_variable).__name__ == "Series":
bound_variable = bound_variable.values.tolist()

# if bound_variable is not empty, check if it has the same length as the number of observations
if len(bound_variable) > 0 and len(bound_variable) != w.num_obs:
raise ValueError("The bound_variable has to be a list of numeric values, e.g. a column of input table.")

# check if min_bound is available when bound_variable is not empty
if len(bound_variable) > 0 and min_bound == 0:
raise ValueError("min_bound is required and greater than 0 when bound_variable is not empty.")

if type(data).__name__ == "DataFrame":
data = data.values.transpose().tolist()

in_data = VecVecDouble()
for d in data:
in_data.push_back(d)

#in_bound_variable = VecDouble(bound_variable)

cluster_ids = gda_redcap(k, w.gda_w, in_data, scale_method, method, distance_method, bound_variable, min_bound, random_seed, cpu_threads)
Expand Down
23 changes: 17 additions & 6 deletions pygeoda/clustering/schc.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ def schc(k, w, data, linkage_method, **kwargs):
w (Weight): An instance of Weight class
data (tuple): A list of numeric vectors of selected variable
linkage_method (str): The method of agglomerative hierarchical clustering: {"single", "complete", "average","ward"}. Defaults to "ward".
bound_variable (tuple, optional): A numeric vector of selected bounding variable
bound_variable (tuple or pandas.core.series.Series, optional): A numeric vector of selected bounding variable
min_bound (float, optional): a minimum value that the sum value of bounding variable int each cluster should be greater than
scale_method (str, optional): One of the scaling methods {'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust'} to apply on input data. Default is 'standardize' (Z-score normalization).
distance_method (str, optional): {"euclidean", "manhattan"} the distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan"
Expand All @@ -33,18 +33,29 @@ def schc(k, w, data, linkage_method, **kwargs):
scale_method = "standardize" if "scale_method" not in kwargs else kwargs['scale_method']
distance_method = 'euclidean' if 'distance_method' not in kwargs else kwargs['distance_method']

if linkage_method not in ["single", "complete", "average","ward"]:
raise ValueError('The method has to be one of {"single", "complete", "average","ward"}')
if linkage_method not in ["single", "complete", "average", "ward"]:
raise ValueError('The method has to be one of {"single", "complete", "average", "ward"}')

in_data = VecVecDouble()
# check if bound_variable is pandas.core.series.Series, if so, convert to list
if type(bound_variable).__name__ == "Series":
bound_variable = bound_variable.values.tolist()

# if bound_variable is not empty, check if it has the same length as the number of observations
if len(bound_variable) > 0 and len(bound_variable) != w.num_obs:
raise ValueError("The bound_variable has to be a list of numeric values, e.g. a column of input table.")

# check if min_bound is available when bound_variable is not empty
if len(bound_variable) > 0 and min_bound == 0:
raise ValueError("min_bound is required and greater than 0 when bound_variable is not empty.")

if type(data).__name__ == "DataFrame":
data = data.values.transpose().tolist()

in_data = VecVecDouble()
for d in data:
in_data.push_back(d)
cluster_ids = gda_schc(k, w.gda_w, in_data, linkage_method, scale_method, distance_method, bound_variable, min_bound)

cluster_ids = gda_schc(k, w.gda_w, in_data, scale_method, linkage_method, distance_method, bound_variable, min_bound)

between_ss = gda_betweensumofsquare(cluster_ids, in_data)
total_ss = gda_totalsumofsquare(in_data)
Expand Down
17 changes: 14 additions & 3 deletions pygeoda/clustering/skater.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ def skater(k, w, data, **kwargs):
k (int): number of clusters
w (Weight): An instance of Weight class
data (list or dataframe): A list of numeric vectors of selected variable or a data frame of selected variables e.g. guerry[['Crm_prs', 'Literacy']]
bound_variable (tuple, optional): A numeric vector of selected bounding variable
bound_variable (tuple or pandas.core.series.Series, optional): A numeric vector of selected bounding variable
min_bound (float, optional): a minimum value that the sum value of bounding variable int each cluster should be greater than
scale_method (str, optional): One of the scaling methods {'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust'} to apply on input data. Default is 'standardize' (Z-score normalization).
distance_method (str, optional): {"euclidean", "manhattan"} the distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan"
Expand All @@ -31,14 +31,25 @@ def skater(k, w, data, **kwargs):
random_seed = 123456789 if 'random_seed' not in kwargs else kwargs['random_seed']
cpu_threads = 6 if 'cpu_threads' not in kwargs else kwargs['cpu_threads']

in_data = VecVecDouble()
# check if bound_variable is pandas.core.series.Series, if so, convert to list
if type(bound_variable).__name__ == "Series":
bound_variable = bound_variable.values.tolist()

# if bound_variable is not empty, check if it has the same length as the number of observations
if len(bound_variable) > 0 and len(bound_variable) != w.num_obs:
raise ValueError("The bound_variable has to be a list of numeric values, e.g. a column of input table.")

# check if min_bound is available when bound_variable is not empty
if len(bound_variable) > 0 and min_bound == 0:
raise ValueError("min_bound is required and greater than 0 when bound_variable is not empty.")

if type(data).__name__ == "DataFrame":
data = data.values.transpose().tolist()

in_data = VecVecDouble()
for d in data:
in_data.push_back(d)

cluster_ids = gda_skater(k, w.gda_w, in_data, scale_method, distance_method, bound_variable, min_bound, random_seed, cpu_threads)

between_ss = gda_betweensumofsquare(cluster_ids, in_data)
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,7 @@
extra_objects=EXTRA_OBJECTS),]

setup (name = 'pygeoda',
version = '0.0.9',
version = '0.1.0',
author = "Xun Li",
author_email = "[email protected]",
url = "https://github.com/geodacenter/pygeoda",
Expand Down
2 changes: 1 addition & 1 deletion tests/test_clustering.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,4 +196,4 @@ def test_SCHC(self):
clusters = pygeoda.schc(p, self.queen_w, self.data, linkage_method)

self.assertAlmostEqual(
clusters["The ratio of between to total sum of squares"], 0.2147711255)
clusters["The ratio of between to total sum of squares"], 0.4241728843)
Loading