We explore bio-inspired training solutions based on the Hebbian principle for deep learning applications in the context of image segmentation tasks.
This tutorial shows how to setup a python environment with the exact library versions. The tools shown here are asdf
and virtualenv
Install asdf using git
git clone https://github.com/asdf-vm/asdf.git ~/.asdf --branch v0.12.0`
Then add to your .bashrc or .zshrc file
. "$HOME/.asdf/asdf.sh"
. "$HOME/.asdf/completions/asdf.bash"
For the changes to have an effect restart the shell.
Then install python 3.11.4
asdf plugin add python
asdf install python 3.11.4
Add to .tool-versions
echo "python 3.11.4" >> .tool-versions
Upgrade pip
and install virtualenv
pip install pip --upgrade
pip install virtualenv
Create new virtual environment
virtualenv venv
Activate the environment
source venv/bin/activate
Install libraries
pip install -r requirements.txt
Launch experiment with:
python exp.py --config <config> --device <device> --restart
Where:
<config>
is the name of a configuration dictionary, with dotted notation, defined anywhere in your code. For exampleconfigs.base.config_base
.<device>
can becpu
,cuda:0
, or any device you wish to use for the experiment.- The flag
--restart
is optional. If you remove it, you can resume a previously suspended experiment from a checkpoint, if available.
Use requirements.txt
Gabriele Lagani: [email protected]