forked from mlcommons/cm4mlperf-inference
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Results from self hosted Github actions - NVIDIARTX4090
- Loading branch information
1 parent
73e2b89
commit bc23f98
Showing
35 changed files
with
12,255 additions
and
0 deletions.
There are no files selected for viewing
3 changes: 3 additions & 0 deletions
3
...rements/40501a6d23f3-nvidia_original-gpu-tensorrt-vdefault-scc24-base/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
| Model | Scenario | Accuracy | Throughput | Latency (in ms) | | ||
|---------------------|------------|------------|--------------|-------------------| | ||
| stable-diffusion-xl | offline | () | 1.314 | - | |
7 changes: 7 additions & 0 deletions
7
...e-diffusion-xl/offline/40501a6d23f3-nvidia_original-gpu-tensorrt-vdefault-scc24-base.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
{ | ||
"starting_weights_filename": "https://github.com/mlcommons/cm4mlops/blob/main/script/get-ml-model-stable-diffusion/_cm.json#L174", | ||
"retraining": "no", | ||
"input_data_types": "int32", | ||
"weight_data_types": "int8", | ||
"weight_transformations": "quantization, affine fusion" | ||
} |
97 changes: 97 additions & 0 deletions
97
...original-gpu-tensorrt-vdefault-scc24-base/stable-diffusion-xl/offline/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
This experiment is generated using the [MLCommons Collective Mind automation framework (CM)](https://github.com/mlcommons/cm4mlops). | ||
|
||
*Check [CM MLPerf docs](https://docs.mlcommons.org/inference) for more details.* | ||
|
||
## Host platform | ||
|
||
* OS version: Linux-6.8.0-49-generic-x86_64-with-glibc2.29 | ||
* CPU version: x86_64 | ||
* Python version: 3.8.10 (default, Nov 7 2024, 13:10:47) | ||
[GCC 9.4.0] | ||
* MLCommons CM version: 3.5.2 | ||
|
||
## CM Run Command | ||
|
||
See [CM installation guide](https://docs.mlcommons.org/inference/install/). | ||
|
||
```bash | ||
pip install -U cmind | ||
|
||
cm rm cache -f | ||
|
||
cm pull repo mlcommons@mlperf-automations --checkout=477f80ff22a22b0503f54e7b5751525a1a520fe0 | ||
|
||
cm run script \ | ||
--tags=app,mlperf,inference,generic,_nvidia,_sdxl,_tensorrt,_test,_r4.1-dev_default,_float16,_offline \ | ||
--quiet=true \ | ||
--env.CM_MLPERF_MODEL_SDXL_DOWNLOAD_TO_HOST=yes \ | ||
--env.CM_QUIET=yes \ | ||
--env.CM_MLPERF_IMPLEMENTATION=nvidia \ | ||
--env.CM_MLPERF_MODEL=sdxl \ | ||
--env.CM_MLPERF_RUN_STYLE=test \ | ||
--env.CM_MLPERF_SKIP_SUBMISSION_GENERATION=False \ | ||
--env.CM_DOCKER_PRIVILEGED_MODE=True \ | ||
--env.CM_MLPERF_BACKEND=tensorrt \ | ||
--env.CM_MLPERF_SUBMISSION_SYSTEM_TYPE=datacenter \ | ||
--env.CM_MLPERF_CLEAN_ALL=True \ | ||
--env.CM_MLPERF_DEVICE= \ | ||
--env.CM_MLPERF_USE_DOCKER=True \ | ||
--env.CM_MLPERF_MODEL_PRECISION=float16 \ | ||
--env.OUTPUT_BASE_DIR=/cm-mount/home/arjun/scc_gh_action_results \ | ||
--env.CM_MLPERF_LOADGEN_SCENARIO=Offline \ | ||
--env.CM_MLPERF_INFERENCE_SUBMISSION_DIR=/cm-mount/home/arjun/scc_gh_action_submissions \ | ||
--env.CM_MLPERF_INFERENCE_VERSION=5.0-dev \ | ||
--env.CM_RUN_MLPERF_INFERENCE_APP_DEFAULTS=r4.1-dev_default \ | ||
--env.CM_MLPERF_SUBMISSION_DIVISION=open \ | ||
--env.CM_RUN_MLPERF_SUBMISSION_PREPROCESSOR=False \ | ||
--env.CM_MLPERF_SUBMISSION_GENERATION_STYLE=short \ | ||
--env.CM_MLPERF_SUT_NAME_RUN_CONFIG_SUFFIX4=scc24-base \ | ||
--env.CM_DOCKER_IMAGE_NAME=scc24-nvidia \ | ||
--env.CM_MLPERF_INFERENCE_MIN_QUERY_COUNT=50 \ | ||
--env.CM_MLPERF_LOADGEN_ALL_MODES=yes \ | ||
--env.CM_MLPERF_INFERENCE_SOURCE_VERSION=5.0.4 \ | ||
--env.CM_MLPERF_LAST_RELEASE=v5.0 \ | ||
--env.CM_TMP_PIP_VERSION_STRING= \ | ||
--env.CM_MODEL=sdxl \ | ||
--env.CM_MLPERF_LOADGEN_COMPLIANCE=no \ | ||
--env.CM_MLPERF_CLEAN_SUBMISSION_DIR=yes \ | ||
--env.CM_RERUN=yes \ | ||
--env.CM_MLPERF_LOADGEN_EXTRA_OPTIONS= \ | ||
--env.CM_MLPERF_LOADGEN_MODE=performance \ | ||
--env.CM_MLPERF_LOADGEN_SCENARIOS,=Offline \ | ||
--env.CM_MLPERF_LOADGEN_MODES,=performance,accuracy \ | ||
--env.CM_OUTPUT_FOLDER_NAME=test_results \ | ||
--env.CM_DOCKER_REUSE_EXISTING_CONTAINER=no \ | ||
--env.CM_DOCKER_DETACHED_MODE=yes \ | ||
--add_deps_recursive.get-mlperf-inference-results-dir.tags=_version.r4_1-dev \ | ||
--add_deps_recursive.get-mlperf-inference-submission-dir.tags=_version.r4_1-dev \ | ||
--add_deps_recursive.mlperf-inference-nvidia-scratch-space.tags=_version.r4_1-dev \ | ||
--add_deps_recursive.submission-checker.tags=_short-run \ | ||
--add_deps_recursive.coco2014-preprocessed.tags=_size.50,_with-sample-ids \ | ||
--add_deps_recursive.coco2014-dataset.tags=_size.50,_with-sample-ids \ | ||
--add_deps_recursive.nvidia-preprocess-data.extra_cache_tags=scc24-base \ | ||
--v=False \ | ||
--print_env=False \ | ||
--print_deps=False \ | ||
--dump_version_info=True | ||
``` | ||
*Note that if you want to use the [latest automation recipes](https://docs.mlcommons.org/inference) for MLPerf (CM scripts), | ||
you should simply reload mlcommons@mlperf-automations without checkout and clean CM cache as follows:* | ||
|
||
```bash | ||
cm rm repo mlcommons@mlperf-automations | ||
cm pull repo mlcommons@mlperf-automations | ||
cm rm cache -f | ||
|
||
``` | ||
|
||
## Results | ||
|
||
Platform: 40501a6d23f3-nvidia_original-gpu-tensorrt-vdefault-scc24-base | ||
|
||
Model Precision: int8 | ||
|
||
### Accuracy Results | ||
|
||
### Performance Results | ||
`Samples per second`: `1.31354` |
73 changes: 73 additions & 0 deletions
73
...riginal-gpu-tensorrt-vdefault-scc24-base/stable-diffusion-xl/offline/accuracy_console.out
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
[2024-12-30 12:43:54,428 main.py:229 INFO] Detected system ID: KnownSystem.Nvidia_40501a6d23f3 | ||
/home/cmuser/.local/lib/python3.8/site-packages/torchvision/datapoints/__init__.py:12: UserWarning: The torchvision.datapoints and torchvision.transforms.v2 namespaces are still Beta. While we do not expect major breaking changes, some APIs may still change according to user feedback. Please submit any feedback you may have in this issue: https://github.com/pytorch/vision/issues/6753, and you can also check out https://github.com/pytorch/vision/issues/7319 to learn more about the APIs that we suspect might involve future changes. You can silence this warning by calling torchvision.disable_beta_transforms_warning(). | ||
warnings.warn(_BETA_TRANSFORMS_WARNING) | ||
/home/cmuser/.local/lib/python3.8/site-packages/torchvision/transforms/v2/__init__.py:54: UserWarning: The torchvision.datapoints and torchvision.transforms.v2 namespaces are still Beta. While we do not expect major breaking changes, some APIs may still change according to user feedback. Please submit any feedback you may have in this issue: https://github.com/pytorch/vision/issues/6753, and you can also check out https://github.com/pytorch/vision/issues/7319 to learn more about the APIs that we suspect might involve future changes. You can silence this warning by calling torchvision.disable_beta_transforms_warning(). | ||
warnings.warn(_BETA_TRANSFORMS_WARNING) | ||
[2024-12-30 12:43:55,740 generate_conf_files.py:107 INFO] Generated measurements/ entries for Nvidia_40501a6d23f3_TRT/stable-diffusion-xl/Offline | ||
[2024-12-30 12:43:55,740 __init__.py:46 INFO] Running command: python3 -m code.stable-diffusion-xl.tensorrt.harness --logfile_outdir="/cm-mount/home/arjun/scc_gh_action_results/test_results/40501a6d23f3-nvidia_original-gpu-tensorrt-vdefault-scc24-base/stable-diffusion-xl/offline/accuracy" --logfile_prefix="mlperf_log_" --performance_sample_count=5000 --test_mode="AccuracyOnly" --gpu_batch_size=2 --mlperf_conf_path="/home/cmuser/CM/repos/local/cache/7f314a33540f461d/inference/mlperf.conf" --tensor_path="build/preprocessed_data/coco2014-tokenized-sdxl/5k_dataset_final/" --use_graphs=false --user_conf_path="/home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/e28415d992624198a4ff320207b51d94.conf" --gpu_inference_streams=1 --gpu_copy_streams=1 --gpu_engines="./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-CLIP-Offline-gpu-b2-fp16.custom_k_99_MaxP.plan,./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-CLIPWithProj-Offline-gpu-b2-fp16.custom_k_99_MaxP.plan,./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-UNetXL-Offline-gpu-b2-int8.custom_k_99_MaxP.plan,./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-VAE-Offline-gpu-b2-fp32.custom_k_99_MaxP.plan" --scenario Offline --model stable-diffusion-xl | ||
[2024-12-30 12:43:55,740 __init__.py:53 INFO] Overriding Environment | ||
/home/cmuser/.local/lib/python3.8/site-packages/torchvision/datapoints/__init__.py:12: UserWarning: The torchvision.datapoints and torchvision.transforms.v2 namespaces are still Beta. While we do not expect major breaking changes, some APIs may still change according to user feedback. Please submit any feedback you may have in this issue: https://github.com/pytorch/vision/issues/6753, and you can also check out https://github.com/pytorch/vision/issues/7319 to learn more about the APIs that we suspect might involve future changes. You can silence this warning by calling torchvision.disable_beta_transforms_warning(). | ||
warnings.warn(_BETA_TRANSFORMS_WARNING) | ||
/home/cmuser/.local/lib/python3.8/site-packages/torchvision/transforms/v2/__init__.py:54: UserWarning: The torchvision.datapoints and torchvision.transforms.v2 namespaces are still Beta. While we do not expect major breaking changes, some APIs may still change according to user feedback. Please submit any feedback you may have in this issue: https://github.com/pytorch/vision/issues/6753, and you can also check out https://github.com/pytorch/vision/issues/7319 to learn more about the APIs that we suspect might involve future changes. You can silence this warning by calling torchvision.disable_beta_transforms_warning(). | ||
warnings.warn(_BETA_TRANSFORMS_WARNING) | ||
[2024-12-30 12:43:57,548 backend.py:71 INFO] Loading TensorRT engine: ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-CLIP-Offline-gpu-b2-fp16.custom_k_99_MaxP.plan. | ||
[2024-12-30 12:43:57,684 backend.py:71 INFO] Loading TensorRT engine: ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-CLIPWithProj-Offline-gpu-b2-fp16.custom_k_99_MaxP.plan. | ||
[2024-12-30 12:43:58,389 backend.py:71 INFO] Loading TensorRT engine: ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-UNetXL-Offline-gpu-b2-int8.custom_k_99_MaxP.plan. | ||
[2024-12-30 12:43:59,788 backend.py:71 INFO] Loading TensorRT engine: ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-VAE-Offline-gpu-b2-fp32.custom_k_99_MaxP.plan. | ||
[2024-12-30 12:44:01,129 backend.py:71 INFO] Loading TensorRT engine: ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-CLIP-Offline-gpu-b2-fp16.custom_k_99_MaxP.plan. | ||
[2024-12-30 12:44:01,255 backend.py:71 INFO] Loading TensorRT engine: ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-CLIPWithProj-Offline-gpu-b2-fp16.custom_k_99_MaxP.plan. | ||
[2024-12-30 12:44:01,934 backend.py:71 INFO] Loading TensorRT engine: ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-UNetXL-Offline-gpu-b2-int8.custom_k_99_MaxP.plan. | ||
[2024-12-30 12:44:03,293 backend.py:71 INFO] Loading TensorRT engine: ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-VAE-Offline-gpu-b2-fp32.custom_k_99_MaxP.plan. | ||
[2024-12-30 12:44:04,459 harness.py:207 INFO] Start Warm Up! | ||
[2024-12-30 12:44:16,246 harness.py:209 INFO] Warm Up Done! | ||
[2024-12-30 12:44:16,246 harness.py:211 INFO] Start Test! | ||
[2024-12-30 13:46:02,709 backend.py:801 INFO] [Server] Received 5000 total samples | ||
[2024-12-30 13:46:02,709 backend.py:809 INFO] [Device 0] Reported 2496 samples | ||
[2024-12-30 13:46:02,709 backend.py:809 INFO] [Device 1] Reported 2504 samples | ||
[2024-12-30 13:46:02,709 harness.py:214 INFO] Test Done! | ||
[2024-12-30 13:46:02,709 harness.py:216 INFO] Destroying SUT... | ||
[2024-12-30 13:46:02,710 harness.py:219 INFO] Destroying QSL... | ||
benchmark : Benchmark.SDXL | ||
buffer_manager_thread_count : 0 | ||
data_dir : /home/cmuser/CM/repos/local/cache/4db00c74da1e44c8/data | ||
gpu_batch_size : 2 | ||
gpu_copy_streams : 1 | ||
gpu_inference_streams : 1 | ||
input_dtype : int32 | ||
input_format : linear | ||
log_dir : /home/cmuser/CM/repos/local/cache/7c0c2e4c9cc3421e/repo/closed/NVIDIA/build/logs/2024.12.30-12.43.53 | ||
mlperf_conf_path : /home/cmuser/CM/repos/local/cache/7f314a33540f461d/inference/mlperf.conf | ||
model_path : /home/cmuser/CM/repos/local/cache/4db00c74da1e44c8/models/SDXL/ | ||
offline_expected_qps : 0.0 | ||
precision : int8 | ||
preprocessed_data_dir : /home/cmuser/CM/repos/local/cache/4db00c74da1e44c8/preprocessed_data | ||
scenario : Scenario.Offline | ||
system : SystemConfiguration(host_cpu_conf=CPUConfiguration(layout={CPU(name='Intel(R) Xeon(R) w7-2495X', architecture=<CPUArchitecture.x86_64: AliasedName(name='x86_64', aliases=(), patterns=())>, core_count=24, threads_per_core=2): 1}), host_mem_conf=MemoryConfiguration(host_memory_capacity=Memory(quantity=197.334532, byte_suffix=<ByteSuffix.GB: (1000, 3)>, _num_bytes=197334532000), comparison_tolerance=0.05), accelerator_conf=AcceleratorConfiguration(layout=defaultdict(<class 'int'>, {GPU(name='NVIDIA GeForce RTX 4090', accelerator_type=<AcceleratorType.Discrete: AliasedName(name='Discrete', aliases=(), patterns=())>, vram=Memory(quantity=23.98828125, byte_suffix=<ByteSuffix.GiB: (1024, 3)>, _num_bytes=25757220864), max_power_limit=450.0, pci_id='0x268410DE', compute_sm=89): 1, GPU(name='NVIDIA GeForce RTX 4090', accelerator_type=<AcceleratorType.Discrete: AliasedName(name='Discrete', aliases=(), patterns=())>, vram=Memory(quantity=23.98828125, byte_suffix=<ByteSuffix.GiB: (1024, 3)>, _num_bytes=25757220864), max_power_limit=500.0, pci_id='0x268410DE', compute_sm=89): 1})), numa_conf=NUMAConfiguration(numa_nodes={}, num_numa_nodes=1), system_id='Nvidia_40501a6d23f3') | ||
tensor_path : build/preprocessed_data/coco2014-tokenized-sdxl/5k_dataset_final/ | ||
test_mode : AccuracyOnly | ||
use_graphs : False | ||
user_conf_path : /home/cmuser/CM/repos/mlcommons@mlperf-automations/script/generate-mlperf-inference-user-conf/tmp/e28415d992624198a4ff320207b51d94.conf | ||
system_id : Nvidia_40501a6d23f3 | ||
config_name : Nvidia_40501a6d23f3_stable-diffusion-xl_Offline | ||
workload_setting : WorkloadSetting(HarnessType.Custom, AccuracyTarget.k_99, PowerSetting.MaxP) | ||
optimization_level : plugin-enabled | ||
num_profiles : 1 | ||
config_ver : custom_k_99_MaxP | ||
accuracy_level : 99% | ||
inference_server : custom | ||
skip_file_checks : False | ||
power_limit : None | ||
cpu_freq : None | ||
[I] Loading bytes from ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-CLIP-Offline-gpu-b2-fp16.custom_k_99_MaxP.plan | ||
[I] Loading bytes from ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-CLIPWithProj-Offline-gpu-b2-fp16.custom_k_99_MaxP.plan | ||
[I] Loading bytes from ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-UNetXL-Offline-gpu-b2-int8.custom_k_99_MaxP.plan | ||
[I] Loading bytes from ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-VAE-Offline-gpu-b2-fp32.custom_k_99_MaxP.plan | ||
[I] Loading bytes from ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-CLIP-Offline-gpu-b2-fp16.custom_k_99_MaxP.plan | ||
[W] Using an engine plan file across different models of devices is not recommended and is likely to affect performance or even cause errors. | ||
[I] Loading bytes from ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-CLIPWithProj-Offline-gpu-b2-fp16.custom_k_99_MaxP.plan | ||
[I] Loading bytes from ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-UNetXL-Offline-gpu-b2-int8.custom_k_99_MaxP.plan | ||
[I] Loading bytes from ./build/engines/Nvidia_40501a6d23f3/stable-diffusion-xl/Offline/stable-diffusion-xl-VAE-Offline-gpu-b2-fp32.custom_k_99_MaxP.plan | ||
[2024-12-30 13:46:03,210 run_harness.py:166 INFO] Result: Accuracy run detected. | ||
|
||
======================== Result summaries: ======================== | ||
|
Oops, something went wrong.