Skip to content

Commit

Permalink
Add nar to readme
Browse files Browse the repository at this point in the history
  • Loading branch information
VanyaVolgushev committed Jan 7, 2025
1 parent f508c0e commit 3395d12
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 0 deletions.
3 changes: 3 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ The currently supported data patterns are:
- set-based axiomatization (discovery)
- list-based axiomatization (discovery)
* Metric functional dependencies (validation)
* Numerical association rules (discovery)
* Fuzzy algebraic constraints (discovery)
* Differential Dependencies (discovery)
* Unique column combinations:
Expand Down Expand Up @@ -219,6 +220,8 @@ Here is a list of papers about patterns, organized in the recommended reading or
- [Sebastian Kruse and Felix Naumann. 2018. Efficient discovery of approximate dependencies. Proc. VLDB Endow. 11, 7 (March 2018), 759–772.](https://www.vldb.org/pvldb/vol11/p759-kruse.pdf)
* Association rules
- [Charu C. Aggarwal, Jiawei Han. 2014. Frequent Pattern Mining. Springer Cham. pp 471.](https://link.springer.com/book/10.1007/978-3-319-07821-2)
* Numerical association rules
- [Minakshi Kaushik, Rahul Sharma, Iztok Fister Jr., and Dirk Draheim. 2023. Numerical Association Rule Mining: A Systematic Literature Review. 1, 1 (July 2023), 50 pages.](https://arxiv.org/abs/2307.00662)
* Matching dependencies
- [Philipp Schirmer, Thorsten Papenbrock, Ioannis Koumarelas, and Felix Naumann. 2020. Efficient Discovery of Matching Dependencies. ACM Trans. Database Syst. 45, 3, Article 13 (September 2020), 33 pages. https://doi.org/10.1145/3392778](https://dl.acm.org/doi/10.1145/3392778)
* Denial constraints
Expand Down
1 change: 1 addition & 0 deletions examples/basic/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ These scenarios showcase a single pattern by discussing its definition and provi
+ [mining_ind.py](https://github.com/Desbordante/desbordante-core/tree/main/examples/basic/mining_ind.py) — a scenario showing how to discover inclusion dependencies.
+ [mining_list_od.py](https://github.com/Desbordante/desbordante-core/tree/main/examples/basic/mining_list_od.py) — a scenario showing how to discover order dependencies based on list axiomatization.
+ [mining_md.py](https://github.com/Desbordante/desbordante-core/tree/main/examples/basic/mining_md.py) — a scenario showing how to discover matching dependencies.
+ [mining_nar.py](https://github.com/Desbordante/desbordante-core/tree/main/examples/basic/mining_nar.py) — a scenario showing how to discover numerical association rules.
+ [mining_pfd.py](https://github.com/Desbordante/desbordante-core/tree/main/examples/basic/mining_pfd.py) — a scenario showing how to discover probabilistic functional dependencies.
+ [mining_set_od_1.py](https://github.com/Desbordante/desbordante-core/tree/main/examples/basic/mining_set_od_1.py) — a scenario showing how to discover order dependencies based on set axiomatization, part 1.
+ [mining_set_od_2.py](https://github.com/Desbordante/desbordante-core/tree/main/examples/basic/mining_set_od_2.py) — a scenario showing how to discover order dependencies based on set axiomatization, part 2.
Expand Down

0 comments on commit 3395d12

Please sign in to comment.