Skip to content

πŸ¦œπŸ”— Deep learning Langchain + Python + OpenAI + Neo4j

Notifications You must be signed in to change notification settings

Cotchi666/langchain-ai-chatbots-docs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

10 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ¦œοΈπŸ”— LangChain

Quick Install

With pip:

%pip install --upgrade --quiet  langchain-core langchain-community langchain-openai

API key: get here

import os
from dotenv import load_dotenv
load_dotenv()
print(os.environ['OPENAI_API_KEY'])

RAG Search Example

from langchain_community.vectorstores import DocArrayInMemorySearch
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_openai.chat_models import ChatOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings

vectorstore = DocArrayInMemorySearch.from_texts(
    ["harrison worked at kensho", "bears like to eat honey"],
    embedding=OpenAIEmbeddings(),
)
retriever = vectorstore.as_retriever()

template = """Answer the question based only on the following context:
{context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
output_parser = StrOutputParser()

setup_and_retrieval = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
)
chain = setup_and_retrieval | prompt | model | output_parser

chain.invoke("where did harrison work?")

With the flow being:

plot

Agent:

plot

Memory:

plot

About

πŸ¦œπŸ”— Deep learning Langchain + Python + OpenAI + Neo4j

Topics

Resources

Stars

Watchers

Forks