Skip to content

Code developed for the 2018 TIP paper "Image Provenance at Scale"

Notifications You must be signed in to change notification settings

CVRL/Scalable_Provenance

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scalable Image Provenance Library

The full image provenance pipeline

DESCRIPTION:


This code implements the algorithms described in "Image Provenance at Scale".

As expressed in the above illustration, it includes 2 main parts:

Each part of this pipeline creates output that is then used as input for the next part of the pipeline.

OVERVIEW:


Image extraction utilizes the Distributed SURF method to extract 5000 local features from each image.

The image index utilizes OPQ, which must be trained on a subset of these features before index construction can begin

The index is built using an Inverted File binned on the trained OPQ centroids using FAISS.

Filtering is a 2 query for each image that returns a JSON list of image ranks from the index

Graph building takes the JSON list and constructs a final provenance graph using the algorithm illustrated above.

REQUIREMENTS:


Python2.7

Python3.6

numpy

opencv

faiss

scipy

scikit-image

matplotlib

psutil

progressbar2

urlparse

joblib

QUESTIONS:


Please contact Joel Brogan ([email protected] ), Aparna Bharati ([email protected]), or Daniel Moreira ([email protected]).

About

Code developed for the 2018 TIP paper "Image Provenance at Scale"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published