-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c72726e
commit 97e5ef6
Showing
6 changed files
with
289 additions
and
59 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,230 @@ | ||
--- | ||
icon: octicons/file-media-24 | ||
description: Applications | ||
--- | ||
|
||
# Applications | ||
|
||
- training multiple channels | ||
- training on custom data type | ||
- early stopping | ||
- training a custom model | ||
- what is the receptive field? | ||
Click on your algorithm of choice to explore various applications. We collected the | ||
algorithms based on the type of training data they require! | ||
|
||
## Keywords | ||
|
||
- **no ground-truth**: The algorithm trains without clean images. | ||
- **single image**: The algorithm can train on a single image. | ||
- **pairs of noisy images**: The algorithm requires pairs of noisy images. | ||
- **ground-truth**: The algorithm requires pairs of clean and noisy images. | ||
|
||
|
||
## Denoising noisy images without clean data | ||
|
||
You have noisy images and no clean images? No problem! These algorithms can help you, as | ||
they do not require any ground-truth data. You can also train on a single image of | ||
reasonable size. | ||
|
||
<div class="md-container secondary-section"> | ||
<div class="g"> | ||
<div class="section"> | ||
<div class="component-wrapper" style="display: block;"> | ||
<div class="responsive-grid"> | ||
<!-- N2V --> | ||
<a class="card-wrapper" href="Noise2Void"> | ||
<div class="card"> | ||
<div class="card-body"> | ||
<div class="logo"> | ||
<span class="twemoji"> | ||
--8<-- "cpu.svg" | ||
</span> | ||
</div> | ||
<div class="card-content"> | ||
<h5>Noise2Void</h5> | ||
<p> | ||
A self-supervised denoising algorithm based on a | ||
pixel masking scheme. | ||
</p> | ||
</div> | ||
</div> | ||
<div class="card-tags"> | ||
<span class=tag>no ground-truth</span> | ||
<span class=tag>single image</span> | ||
</div> | ||
</div> | ||
</a> | ||
<!-- N2V2 --> | ||
<a class="card-wrapper" href="N2V2"> | ||
<div class="card"> | ||
<div class="card-body"> | ||
<div class="logo"> | ||
<span class="twemoji"> | ||
--8<-- "cpu.svg" | ||
</span> | ||
</div> | ||
<div class="card-content"> | ||
<h5>N2V2</h5> | ||
<p> | ||
A variant of Noise2Void capable of removing | ||
checkboard artefacts. | ||
</p> | ||
</div> | ||
</div> | ||
<div class="card-tags"> | ||
<span class=tag>no ground-truth</span> | ||
<span class=tag>single image</span> | ||
</div> | ||
</div> | ||
</a> | ||
</div> | ||
<div class="responsive-grid"> | ||
<!-- structN2V --> | ||
<a class="card-wrapper" href="structN2V"> | ||
<div class="card"> | ||
<div class="card-body"> | ||
<div class="logo"> | ||
<span class="twemoji"> | ||
--8<-- "cpu.svg" | ||
</span> | ||
</div> | ||
<div class="card-content"> | ||
<h5>StructN2V</h5> | ||
<p> | ||
A variant of Noise2Void that uses an enhanced mask | ||
to remove structured noise. | ||
</p> | ||
</div> | ||
</div> | ||
<div class="card-tags"> | ||
<span class=tag>no ground-truth</span> | ||
<span class=tag>single image</span> | ||
</div> | ||
</div> | ||
</a> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
|
||
|
||
If you have multiple noisy instances of the same structure (e.g. a noisy time-lapse), | ||
then Noise2Noise might be the right choice for you. | ||
|
||
<!-- The following links are pointing to non existing pages (pre-build) --> | ||
<!-- Disable markdown link check to allow bulding the pages --> | ||
<!-- markdown-link-check-disable --> | ||
<div class="md-container secondary-section"> | ||
<div class="g"> | ||
<div class="section"> | ||
<div class="component-wrapper" style="display: block;"> | ||
<div class="responsive-grid"> | ||
<!-- Noise2Noise --> | ||
<a class="card-wrapper" href="Noise2Noise"> | ||
<div class="card"> | ||
<div class="card-body"> | ||
<div class="logo"> | ||
<span class="twemoji"> | ||
--8<-- "cpu.svg" | ||
</span> | ||
</div> | ||
<div class="card-content"> | ||
<h5>Noise2Noise</h5> | ||
<p> | ||
A supervised methods that can denoise images without | ||
corresponding clean data. | ||
</p> | ||
</div> | ||
</div> | ||
<div class="card-tags"> | ||
<span class=tag>no ground-truth</span> | ||
<span class=tag>pairs of noisy images</span> | ||
</div> | ||
</div> | ||
</a> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
|
||
|
||
## Supervised restoration with clean images | ||
|
||
If you have pairs of clean (e.g. high SNR, long exposure or high laser power) and noisy | ||
images, then CARE might be the right choice for you. | ||
|
||
Note that CARE can be used for a variety of tasks, such as denoising, deconvolution, | ||
isotropic resolution restoration or projection. | ||
|
||
|
||
<div class="md-container secondary-section"> | ||
<div class="g"> | ||
<div class="section"> | ||
<div class="component-wrapper" style="display: block;"> | ||
<div class="responsive-grid"> | ||
<!-- N2V --> | ||
<a class="card-wrapper" href="CARE"> | ||
<div class="card"> | ||
<div class="card-body"> | ||
<div class="logo"> | ||
<span class="twemoji"> | ||
--8<-- "cpu.svg" | ||
</span> | ||
</div> | ||
<div class="card-content"> | ||
<h5>CARE</h5> | ||
<p> | ||
The original supervised method to restore microscopy | ||
images. | ||
</p> | ||
</div> | ||
</div> | ||
<div class="card-tags"> | ||
<span class=tag>ground-truth</span> | ||
</div> | ||
</div> | ||
</a> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
|
||
|
||
|
||
## Using the Lightning API | ||
|
||
If you need more control on the algorithm training, for instance to implement or replace | ||
features, you can use the Lightning API. | ||
|
||
It uses [PyTorch Lightning](https://lightning.ai/docs/pytorch/stable/) and the | ||
CAREamics Lightning components. | ||
|
||
|
||
<div class="md-container secondary-section"> | ||
<div class="g"> | ||
<div class="section"> | ||
<div class="component-wrapper" style="display: block;"> | ||
<div class="responsive-grid"> | ||
<!-- N2V --> | ||
<a class="card-wrapper" href="Lightning_API"> | ||
<div class="card"> | ||
<div class="card-body"> | ||
<div class="logo"> | ||
<span class="twemoji"> | ||
--8<-- "cpu.svg" | ||
</span> | ||
</div> | ||
<div class="card-content"> | ||
<h5>Lightning API</h5> | ||
<p> | ||
Get full control of the training and prediction | ||
pipelines by using CAREamics Lightning components. | ||
</p> | ||
</div> | ||
</div> | ||
</div> | ||
</a> | ||
</div> | ||
</div> | ||
</div> | ||
</div> | ||
</div> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.