Skip to content

Commit

Permalink
Litellm dev 01 06 2025 p2 (#7597)
Browse files Browse the repository at this point in the history
* test(test_amazing_vertex_completion.py): fix test

* test: initial working code gecko test

* fix(vertex_ai_non_gemini.py): support vertex ai code gecko fake streaming

Fixes #7360

* test(test_get_model_info.py): add test for getting custom provider model info

Covers #7575

* fix(utils.py): fix get_provider_model_info check

Handle custom llm provider scenario

Fixes https://github.com/
/issues/7575
  • Loading branch information
krrishdholakia authored Jan 7, 2025
1 parent b397dc1 commit 0c3fef2
Show file tree
Hide file tree
Showing 4 changed files with 76 additions and 12 deletions.
24 changes: 17 additions & 7 deletions litellm/llms/vertex_ai/vertex_ai_non_gemini.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@

import litellm
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.llms.bedrock.common_utils import ModelResponseIterator
from litellm.llms.custom_httpx.http_handler import _DEFAULT_TTL_FOR_HTTPX_CLIENTS
from litellm.types.llms.vertex_ai import *
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
Expand Down Expand Up @@ -197,6 +198,7 @@ def completion( # noqa: PLR0915
client_options = {
"api_endpoint": f"{vertex_location}-aiplatform.googleapis.com"
}
fake_stream = False
if (
model in litellm.vertex_language_models
or model in litellm.vertex_vision_models
Expand All @@ -220,6 +222,7 @@ def completion( # noqa: PLR0915
)
mode = "text"
request_str += f"llm_model = CodeGenerationModel.from_pretrained({model})\n"
fake_stream = True
elif model in litellm.vertex_code_chat_models: # vertex_code_llm_models
llm_model = _vertex_llm_model_object or CodeChatModel.from_pretrained(model)
mode = "chat"
Expand Down Expand Up @@ -275,17 +278,22 @@ def completion( # noqa: PLR0915
return async_completion(**data)

completion_response = None

stream = optional_params.pop(
"stream", None
) # See note above on handling streaming for vertex ai
if mode == "chat":
chat = llm_model.start_chat()
request_str += "chat = llm_model.start_chat()\n"

if "stream" in optional_params and optional_params["stream"] is True:
if fake_stream is not True and stream is True:
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
# we handle this by removing 'stream' from optional params and sending the request
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
optional_params.pop(
"stream", None
) # vertex ai raises an error when passing stream in optional params

request_str += (
f"chat.send_message_streaming({prompt}, **{optional_params})\n"
)
Expand All @@ -298,6 +306,7 @@ def completion( # noqa: PLR0915
"request_str": request_str,
},
)

model_response = chat.send_message_streaming(prompt, **optional_params)

return model_response
Expand All @@ -314,10 +323,8 @@ def completion( # noqa: PLR0915
)
completion_response = chat.send_message(prompt, **optional_params).text
elif mode == "text":
if "stream" in optional_params and optional_params["stream"] is True:
optional_params.pop(
"stream", None
) # See note above on handling streaming for vertex ai

if fake_stream is not True and stream is True:
request_str += (
f"llm_model.predict_streaming({prompt}, **{optional_params})\n"
)
Expand Down Expand Up @@ -384,7 +391,7 @@ def completion( # noqa: PLR0915
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if "stream" in optional_params and optional_params["stream"] is True:
if stream is True:
response = TextStreamer(completion_response)
return response
elif mode == "private":
Expand Down Expand Up @@ -413,7 +420,7 @@ def completion( # noqa: PLR0915
and "\nOutput:\n" in completion_response
):
completion_response = completion_response.split("\nOutput:\n", 1)[1]
if "stream" in optional_params and optional_params["stream"] is True:
if stream is True:
response = TextStreamer(completion_response)
return response

Expand Down Expand Up @@ -465,6 +472,9 @@ def completion( # noqa: PLR0915
total_tokens=prompt_tokens + completion_tokens,
)
setattr(model_response, "usage", usage)

if fake_stream is True and stream is True:
return ModelResponseIterator(model_response)
return model_response
except Exception as e:
if isinstance(e, VertexAIError):
Expand Down
6 changes: 5 additions & 1 deletion litellm/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -4224,6 +4224,7 @@ def _get_model_info_helper( # noqa: PLR0915
_model_info: Optional[Dict[str, Any]] = None
key: Optional[str] = None
provider_config: Optional[BaseLLMModelInfo] = None

if combined_model_name in litellm.model_cost:
key = combined_model_name
_model_info = _get_model_info_from_model_cost(key=key)
Expand Down Expand Up @@ -4263,7 +4264,10 @@ def _get_model_info_helper( # noqa: PLR0915
):
_model_info = None

if custom_llm_provider:
if custom_llm_provider and custom_llm_provider in [
provider.value for provider in LlmProviders
]:
# Check if the provider string exists in LlmProviders enum
provider_config = ProviderConfigManager.get_provider_model_info(
model=model, provider=LlmProviders(custom_llm_provider)
)
Expand Down
20 changes: 16 additions & 4 deletions tests/local_testing/test_amazing_vertex_completion.py
Original file line number Diff line number Diff line change
Expand Up @@ -930,7 +930,7 @@ async def test_gemini_pro_function_calling_httpx(model, sync_mode):
"vertex_ai/mistral-large@2407",
"vertex_ai/mistral-nemo@2407",
"vertex_ai/codestral@2405",
"vertex_ai/meta/llama3-405b-instruct-maas",
# "vertex_ai/meta/llama3-405b-instruct-maas",
], #
) # "vertex_ai",
@pytest.mark.parametrize(
Expand Down Expand Up @@ -960,7 +960,6 @@ async def test_partner_models_httpx(model, sync_mode):
"model": model,
"messages": messages,
"timeout": 10,
"mock_response": "Hello, how are you?",
}
if sync_mode:
response = litellm.completion(**data)
Expand Down Expand Up @@ -993,7 +992,8 @@ async def test_partner_models_httpx(model, sync_mode):
"model",
[
"vertex_ai/mistral-large@2407",
"vertex_ai/meta/llama3-405b-instruct-maas",
# "vertex_ai/meta/llama3-405b-instruct-maas",
"vertex_ai/codestral@2405",
], #
) # "vertex_ai",
@pytest.mark.parametrize(
Expand Down Expand Up @@ -1023,7 +1023,6 @@ async def test_partner_models_httpx_streaming(model, sync_mode):
"model": model,
"messages": messages,
"stream": True,
"mock_response": "Hello, how are you?",
}
if sync_mode:
response = litellm.completion(**data)
Expand Down Expand Up @@ -3193,3 +3192,16 @@ async def test_vertexai_model_garden_model_completion(
assert response.usage.completion_tokens == 109
assert response.usage.prompt_tokens == 63
assert response.usage.total_tokens == 172


def test_vertexai_code_gecko():
litellm.set_verbose = True
load_vertex_ai_credentials()
response = completion(
model="vertex_ai/code-gecko@002",
messages=[{"role": "user", "content": "Hello world!"}],
stream=True,
)

for chunk in response:
print(chunk)
38 changes: 38 additions & 0 deletions tests/local_testing/test_get_model_info.py
Original file line number Diff line number Diff line change
Expand Up @@ -247,3 +247,41 @@ def test_model_info_bedrock_converse_enforcement(monkeypatch):
)
except FileNotFoundError as e:
pytest.skip("whitelisted_bedrock_models.txt not found")


def test_get_model_info_custom_provider():
# Custom provider example copied from https://docs.litellm.ai/docs/providers/custom_llm_server:
import litellm
from litellm import CustomLLM, completion, get_llm_provider

class MyCustomLLM(CustomLLM):
def completion(self, *args, **kwargs) -> litellm.ModelResponse:
return litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello world"}],
mock_response="Hi!",
) # type: ignore

my_custom_llm = MyCustomLLM()

litellm.custom_provider_map = [ # 👈 KEY STEP - REGISTER HANDLER
{"provider": "my-custom-llm", "custom_handler": my_custom_llm}
]

resp = completion(
model="my-custom-llm/my-fake-model",
messages=[{"role": "user", "content": "Hello world!"}],
)

assert resp.choices[0].message.content == "Hi!"

# Register model info
model_info = {"my-custom-llm/my-fake-model": {"max_tokens": 2048}}
litellm.register_model(model_info)

# Get registered model info
from litellm import get_model_info

get_model_info(
model="my-custom-llm/my-fake-model"
) # 💥 "Exception: This model isn't mapped yet." in v1.56.10

0 comments on commit 0c3fef2

Please sign in to comment.