Play! is a PlayStation2 emulator for Windows, macOS, UNIX, Android, iOS & web browser platforms.
Compatibility information is available on the official Compatibility Tracker. If a specific game doesn't work with the emulator, please create a new issue there.
For more information, please visit purei.org.
You can try the experimental web browser version here: playjs.purei.org.
For general discussion, you're welcome to join our Discord: https://discord.gg/HygQnQP.
This emulator uses JIT code generation to speed things up. This is not supported by default by iOS, thus, there are some extra requirements:
- Have a device running iOS 13 or less, or an arm64e device running iOS 14.2/14.3.
- Have a jailbroken device.
If these requirements are not met, there are still ways to enable JIT through other means. Here is a guide explaining how JIT can be enabled:
https://spidy123222.github.io/iOS-Debugging-JIT-Guides/
Play! implements automatic JIT activation through AltServer, which requires AltServer to be running on the same network as your iOS device. This can be enabled in the Settings menu of the emulator.
You can also build the emulator yourself and launch it through Xcode's debugger, but you will need to be tethered to your Mac while playing. You will also need a paid developer license to do that.
If you try to play a game without JIT enabled, you will experience a crash when you launch the game.
The files required to run arcade games should be placed inside the arcaderoms
subdirectory of your Play! Data Files
directory.
arcaderoms/
bldyr3b.zip
bldyr3b/
bldyr3b.chd
tekken4.zip
tekken4/
tef1dvd0.chd
Some arcade specific actions are mapped to these buttons on the PS2 controller mappings:
- Service/Coin: SELECT
- Test: L3 & R3 pressed at the same time
Please make sure your CHD files are in the proper format. It's possible to use chdman
to verify wether your CDVD image is really a CDVD image.
chdman info -i image.chd
If you see a GDDD
metadata in there, it means your CDVD image needs to be converted. It can be done this way:
mv image.chd image.chd.orig
chdman extracthd -i image.chd.orig -o image.iso
chdman createcd -i image.iso -o image.chd
First you'll need to clone this repo which contains the emulator source code, alongside the submodules required to build Play!:
git clone --recurse-submodules https://github.com/jpd002/Play-.git
cd Play-
The easiest way to build the project on Windows is to open Qt Creator and direct it to the Cmake file in /project/dir/Play-/CMakeLists.txt
.
You can also build the project using Visual Studio or cmdline, for that you must follow these instructions:
To build for Windows you will need to have CMake installed on your system.
mkdir build
cd build
# Not specifying -G will automatically generate 32-bit projects.
cmake .. -G "Visual Studio 15 2017 Win64" -DCMAKE_PREFIX_PATH="C:\Qt\5.10.1\msvc2017_64" -DUSE_QT=YES
You can now build the project by opening the generated Visual Studio Solution or continue through cmdline:
cmake --build . --config Release
Note: --config
can be Release
, Debug
, or RelWithDebInfo
.
If you don't have CMake installed, you can install it using Homebrew with the following command:
brew install cmake
There are two ways to generate a build for macOS. Either by using Makefiles, or Xcode:
mkdir build
cd build
# Not specifying -G will automatically pick Makefiles
cmake .. -G Xcode -DCMAKE_PREFIX_PATH=~/Qt/5.1.0/clang_64/
cmake --build . --config Release
# OR
cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_PREFIX_PATH=~/Qt/5.1.0/clang_64/
cmake --build .
To generate a build for iOS, you will need to add the following parameters to the CMake invocation:
-DCMAKE_TOOLCHAIN_FILE=../../../Dependencies/cmake-ios/ios.cmake -DTARGET_IOS=ON
iOS build doesn't use Qt, so omit -DCMAKE_PREFIX_PATH=...
Example:
cmake .. -G Xcode -DCMAKE_TOOLCHAIN_FILE=../deps/Dependencies/cmake-ios/ios.cmake -DTARGET_IOS=ON
Note: iOS builds generated with Makefiles will not be FAT binaries.
To test your iOS builds on a device, you will need to setup code signing:
- Set
CODE_SIGNING_ALLOWED
toYES
on thePlay
target. - Set your code signing parameters in Signing & Capabilities tab in Xcode.
To build with Vulkan on macOS, just make sure the $VULKAN_SDK
environment variable is set with the proper path.
On iOS, you will need to add this to your CMake command line:
-DCMAKE_PREFIX_PATH=$VULKAN_SDK
if you don't have Cmake or OpenAL lib installed, you'll also require Qt. (preferably version 5.6)
You can install it using your OS packaging tool, e.g Ubuntu: apt install cmake libalut-dev qt5-default libevdev-dev libqt5x11extras5-dev libsqlite3-dev
On UNIX systems there are 3 ways to setup a build. Using Qt creator, makefile or Ninja:
-
QT Creator
- Open Project ->
Play/CMakeLists.txt
- Open Project ->
-
Makefile/Ninja:
mkdir build cd build
# Not specifying -G will automatically pick Makefiles cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release -DCMAKE_PREFIX_PATH=/opt/qt56/ cmake --build . # OR cmake .. -G Ninja -DCMAKE_PREFIX_PATH=/opt/qt56/ cmake --build . --config Release
The above example uses a backport repo to install Qt5.6 on Ubuntu Trusty.
Note: CMAKE_PREFIX_PATH
refers to the Qt directory containing bin/libs folder. If you install Qt from their official website, your CMAKE_PREFIX_PATH
might look like this: ~/Qt5.6.0/5.6/gcc_64/
Building for Android has been tested on macOS and UNIX environments.
Android can be built using Android Studio, or Gradle:
- Android Studio:
- Files-> Open Projects-> Directory To
Play/build_android
- Install NDK using SDK manager
- Edit/create
Play/build_android/local.properties
- OSX: Add a new line:
ndk.dir=/Users/USER_NAME/Library/Android/sdk/ndk-bundle
replacingUSER_NAME
with your macOS username - UNIX: Add a new line:
ndk.dir=~/Android/Sdk/ndk-bundle
- Windows: Add a new line:
C:\Users\USER_NAME\AppData\Local\Android\sdk\ndk-bundle
- Please leave an empty new line at the end of the file.
- Edit/create
- Files-> Open Projects-> Directory To
Note: These examples are only valid if you installed NDK through Android Studio's SDK manager. Otherwise, you must specify the correct location to the Android NDK.
Once this is done, you can start the build:
- Gradle: Prerequisite Android SDK & NDK (Both can be installed through Android Studio)
- edit/create
Play/build_android/local.properties
- OSX:
- Add a new line:
sdk.dir=/Users/USER_NAME/Library/Android/sdk
replacingUSER_NAME
with your macOS username - Add a new line:
ndk.dir=/Users/USER_NAME/Library/Android/sdk/ndk-bundle
replacingUSER_NAME
with your macOS username
- Add a new line:
- UNIX:
- Add a new line:
sdk.dir=~/Android/Sdk
- Add a new line:
ndk.dir=~/Android/Sdk/ndk-bundle
- Add a new line:
- Windows:
- Add a new line:
sdk.dir=C:\Users\USER_NAME\AppData\Local\Android\sdk
- Add a new line:
ndk.dir=C:\Users\USER_NAME\AppData\Local\Android\sdk\ndk-bundle
- Add a new line:
- Please leave an empty new line at the end of the file.
- OSX:
- edit/create
Note: These examples are only valid if you installed NDK through Android Studio's SDK manager. Otherwise you must specify the correct location to Android NDK. Once this is done, you can start the build:
cd Play/build_android
sh gradlew assembleDebug
Building through Android Studio, you have the option to “Generate Signed APK”.
When building through Gradle, make sure these variables are defined in a gradle.properties
file, either in your project directory or in your GRADLE_USER_HOME
directory:
PLAY_RELEASE_STORE_FILE=/location/to/my/key.jks
PLAY_RELEASE_STORE_PASSWORD=mysuperhardpassword
PLAY_RELEASE_KEY_ALIAS=myalias
PLAY_RELEASE_KEY_PASSWORD=myevenharderpassword
Then, you should be able to use assembleRelease
to generate a signed release build.
cd Play/build_android
sh gradlew assembleRelease
# or on Windows
gradlew.bat assembleRelease
Building for the web browser environment requires emscripten.
Use emcmake
to generate the project:
mkdir build
cd build
emcmake cmake .. -DCMAKE_BUILD_TYPE=Release -DBUILD_TESTS=OFF -DBUILD_PLAY=ON -DBUILD_PSFPLAYER=ON -DUSE_QT=OFF
Upon completion, you can build the JavaScript/WebAssembly files using this command line:
cmake --build . --config Release
This will generate the JavaScript glue code and the WebAssembly module required for the web application located in js/play_browser
. Here's where the output files from emscripten need to be copied:
build_cmake/build/Source/ui_js/Play.js -> js/play_browser/src/Play.js
build_cmake/build/Source/ui_js/Play.wasm -> js/play_browser/public/Play.wasm
build_cmake/build/Source/ui_js/Play.js -> js/play_browser/public/Play.js
build_cmake/build/Source/ui_js/Play.worker.js -> js/play_browser/public/Play.worker.js
Once this is done, you should be able to go in the js/play_browser
folder and run the following to get a local version running in your web browser:
npm install
npm start
- Write protection on memory pages is not supported, thus, games loading modules on the EE might not work properly since JIT cache can't be invalidated.
- No control over floating point environment, default rounding mode is used, which can cause issues in some games.