Skip to content

Commit

Permalink
Adds a new front-end tutorial
Browse files Browse the repository at this point in the history
  • Loading branch information
Alexandre Sajus committed Dec 11, 2024
1 parent b3cb352 commit 5aa1d51
Show file tree
Hide file tree
Showing 17 changed files with 530 additions and 0 deletions.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
47 changes: 47 additions & 0 deletions docs/tutorials/articles/sales_dashboard/index.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
---
title: Creating a Sales Dashboard
category: fundamentals
data-keywords: gui vizelement chart navbar table layout part menu state multi-page callback
short-description: Understand basic knowledge of Taipy by creating a multi-page sales dashboard.
order: 1.5
img: sales_dashboard/images/thumbnail.png
---

!!! note "Supported Python versions"
Taipy requires **Python 3.9** or newer.

This tutorial focuses on creating a simple sales dashboard application. You'll learn about visual elements,
interaction, styling, and multi-page applications.

![Final Application](images/final_app.png){width=90% .tp-image-border}

This tutorial is also available in video format:

<p align="center">
<a href="https://youtu.be/4F-266YnTkM" target="_blank">
<img src="images/yt-thumbnail.png" alt="Youtube Tutorial" width="50%"/>
</a>
</p>

### Installation

Ensure you have Python 3.9 or newer, then install Taipy and Plotly:

```bash
pip install taipy plotly
```

!!! info
Use `pip install taipy` for the latest stable version. Need help with pip? Check out
the [installation guide](http://docs.python-guide.org/en/latest/starting/installation/).

The dataset used in this tutorial is the
[SuperStore Sales dataset](https://www.kaggle.com/datasets/rohitsahoo/sales-forecasting)
available [here](https://github.com/AlexandreSajus/taipy-course/blob/main/data.csv).

## Tutorial Steps

1. [Visual Elements](step_01/step_01.md)
2. [Styling](step_02/step_02.md)
3. [Charts](step_03/step_03.md)
4. [Multipage](step_04/step_04.md)
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
115 changes: 115 additions & 0 deletions docs/tutorials/articles/sales_dashboard/step_01/step_01.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
---
hide:
- toc
---

The full code for this step is available
[here](https://github.com/AlexandreSajus/taipy-course/blob/main/2_visual_elements/main.py)

Let's start by creating a simple page with 3 components: a selector to select a category of items,
a bar chart which displays the sales of the top 10 countries for this category and
a table which displays data for the selected category

![Step 1 Application](images/simple_app.png){ width=90% : .tp-image-border }

Let's start by importing the necessary libraries:

```python
from taipy.gui import Gui
import taipy.gui.builder as tgb
import pandas as pd
```

We can now start creating the page. We will first add a [selector](../../../../refmans/gui/viselements/generic/selector.md).

```python
with tgb.Page() as page:
tgb.selector(value="{selected_category}", lov="{categories}", on_change=change_category)
```

Taipy [visual elements](../../../../refmans/gui/viselements/index.md) take many properties.
Note that dynamic properties use a quote and brackets syntax. We use `value="{selected_category}"`
to signal to Taipy that `selected_category` should change when the user uses the selector.
Likewise, if `categories` changes, the selector will get updated with the new values.

Here, selector needs an associated string variable which will change when a user selects a value,
a list of values (lov) to choose from, and a callback function to call when the value changes.
We can define them above:

```python
data = pd.read_csv("data.csv")
selected_category = "Furniture"
categories = list(data["Category"].unique())

def change_category(state):
# Do nothing for now, we will implement this later
return None
```

We can now add a chart to display the sales of the top 10 countries for the selected category.

```python
tgb.chart(
data="{chart_data}",
x="State",
y="Sales",
type="bar",
layout="{layout}",
)
```

Taipy charts have a specific syntax described [here](../../../../refmans/gui/viselements/generic/chart.md). You
can also directly embed Plotly charts using the `figure` property as we will do in [Step 3](../step_03/step_03.md).

Here we need to provide a Pandas Dataframe with the data to display, the x and y columns to use, the type of chart,
and a layout dictionary with additional properties.

```python
chart_data = (
data.groupby("State")["Sales"]
.sum()
.sort_values(ascending=False)
.head(10)
.reset_index()
)

layout = {"yaxis": {"title": "Revenue (USD)"}, "title": "Sales by State"}
```

Lastly, we can add a table to display the data for the selected category.

```python
tgb.table(data="{data}")
```

We can now run the application using:

```python
Gui(page=page).run(title="Sales", dark_mode=False, debug=True)
```

`debug=True` will display a stack trace of the errors if any occur.
You can also set `use_reloader=True` to automatically reload the page
when you save changes to the code and `port=XXXX` to change the server port.

The application runs but has no interaction. We need to code the callback function
to update the chart and table when the user selects a category.

```python
def change_category(state):
state.data = data[data["Category"] == state.selected_category]
state.chart_data = (
state.data.groupby("State")["Sales"]
.sum()
.sort_values(ascending=False)
.head(10)
.reset_index()
)
state.layout = {
"yaxis": {"title": "Revenue (USD)"},
"title": f"Sales by State for {state.selected_category}",
}
```

Taipy uses a `state` object to store the variables per client.
The syntax to update a variable will always be `state.variable = new_value`.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
198 changes: 198 additions & 0 deletions docs/tutorials/articles/sales_dashboard/step_02/step_02.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
---
hide:
- toc
---

The full code for this step is available
[here](https://github.com/AlexandreSajus/taipy-course/tree/main/3_styling)

This step will be about styling the application. We will add more filters, layout the visual element and
regroup them in parts.

![Styling Application](images/styling_app.png){ width=90% : .tp-image-border }

We can still use the same code as the previous step, but let's recreate the page from scratch:

```python
with tgb.Page() as page:
with tgb.part(class_name="container"):
tgb.text("# Sales by **State**", mode="md")
```

[Part](../../../../refmans/gui/viselements/generic/part.md) allows you to group and style visual elements together.
Here, the [container](../../../../userman/gui/styling/stylekit.md) class is a predefined style
that will limit the width of visual elements contained in the part.

[Text](../../../../refmans/gui/viselements/generic/text.md) is a simple text visual element. Here we use the
Markdown (md) mode to display a title and make the word "State". We can also color bold text in orange
by using CSS. Create a new CSS file with the same name as the Python file and add the following code:

```css
strong,
b {
font-weight: bold;
color: var(--color-primary);
}
```

Let's now add a new container for the filters:

```python
with tgb.part(class_name="card"):
with tgb.layout(columns="1 2 1"):
with tgb.part():
tgb.text("Filter **From**", mode="md")
with tgb.part():
tgb.text("Filter Product **Category**", mode="md")
with tgb.part(class_name="text-center"):
tgb.button(
"Apply",
)
```

[Card](../../../../userman/gui/styling/stylekit.md) is a predefined style that will regroup visual elements in
a white box. [layout](../../../../refmans/gui/viselements/generic/layout.md) allows you to create columns
for visual elements. Here we create 3 columns with a ratio of 1:2:1, the second column will be twice as wide as the
first and last columns. The contents of each column then needs to be separated in parts.

![Layout](images/layout.png){ width=90% : .tp-image-border }

We can now add [date selectors](../../../../refmans/gui/viselements/generic/date.md),
[selectors](../../../../refmans/gui/viselements/generic/selector.md) and a
[button](../../../../refmans/gui/viselements/generic/button.md) to apply the filters:

```python
with tgb.part(class_name="card"):
with tgb.layout(columns="1 2 1"):
with tgb.part():
tgb.text("Filter **From**", mode="md")
tgb.date("{start_date}")
tgb.text("To")
tgb.date("{end_date}")
with tgb.part():
tgb.text("Filter Product **Category**", mode="md")
tgb.selector(
value="{selected_category}",
lov="{categories}",
on_change=change_category,
dropdown=True,
)
tgb.text("Filter Product **Subcategory**", mode="md")
tgb.selector(
value="{selected_subcategory}",
lov="{subcategories}",
dropdown=True,
)
with tgb.part(class_name="text-center"):
tgb.button(
"Apply",
class_name="plain apply_button",
on_action=apply_changes,
)
```

You'll notice we converted our selectors to dropdowns by setting the `dropdown` property to `True`.
We also applied styling to the button: `plain` is a predefined style that colors the button in orange.
Predefined styles are available in visual elements documentation.
Check out the styling part of [button](../../../../refmans/gui/viselements/generic/button.md/).
`apply_button` is a custom style that we can add using our CSS file:

```css
.apply_button {
margin-top: 158px;
}
```

This will add a margin to the top of the button to align it with the filters.
We can also add properties to all Taipy buttons by applying properties to the `taipy-button` class
(You can find these class names by inspecting the page on a visual element)

```css
.taipy-button {
width: 60%
}
```

![Filters](images/filters.png){ width=90% : .tp-image-border }

We can now add the chart and the table:

```python
tgb.html("br")
tgb.chart(
data="{chart_data}",
x="State",
y="Sales",
type="bar",
layout="{layout}",
)
tgb.html("br")
tgb.table(data="{data}")

Gui(page=page).run(title="Sales", dark_mode=False, debug=True)

```

We use `tgb.html("br")` to add a line break and create space between elements.

The last thing we need is to initialize the new variables and create the callback
function to apply the filter:

```python
data = pd.read_csv("data.csv")
chart_data = (
data.groupby("State")["Sales"]
.sum()
.sort_values(ascending=False)
.head(10)
.reset_index()
)

start_date = "2015-01-01"
start_date = pd.to_datetime(start_date)
end_date = "2018-12-31"
end_date = pd.to_datetime(end_date)

categories = list(data["Category"].unique())
selected_category = "Furniture"

selected_subcategory = "Bookcases"
subcategories = list(
data[data["Category"] == selected_category]["Sub-Category"].unique()
)

layout = {"yaxis": {"title": "Revenue (USD)"}, "title": "Sales by State"}


def change_category(state):
state.subcategories = list(
data[data["Category"] == state.selected_category]["Sub-Category"].unique()
)
state.selected_subcategory = state.subcategories[0]


def apply_changes(state):
state.data = data[
(
pd.to_datetime(data["Order Date"], format="%d/%m/%Y")
>= pd.to_datetime(state.start_date)
)
& (
pd.to_datetime(data["Order Date"], format="%d/%m/%Y")
<= pd.to_datetime(state.end_date)
)
]
state.data = state.data[state.data["Category"] == state.selected_category]
state.data = state.data[state.data["Sub-Category"] == state.selected_subcategory]
state.chart_data = (
state.data.groupby("State")["Sales"]
.sum()
.sort_values(ascending=False)
.head(10)
.reset_index()
)
state.layout = {
"yaxis": {"title": "Revenue (USD)"},
"title": f"Sales by State for {state.selected_category} - {state.selected_subcategory}",
}
```
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 5aa1d51

Please sign in to comment.