- Deep Complex Networks (ICLR 2018)
URL : https://arxiv.org/abs/1705.09792 - On Complex Valued Convolutional Neural Networks
URL : https://arxiv.org/abs/1602.09046 - Complex domain backpropagation
IEEE transactions on Circuits and systems II: analog and digital signal processing, 39(5):330–334, 1992.
- Models of ordinary deep learning update parameters in the real numbers area.
- But should it be real number? Can you think about deep learning model in the field of complex numbers?
- Deep learning in complex numbers has more expressive power than in the real numbers. (It is said that there are many advantages.)
- This paper introduces the neural network module in the field of multiple numbers, and introduces some active functions as possible.
In this repo, the solution networks and proposed activation functions are implemented.
It then examines the performance of active functions in the complex numbers and examines the following mathematical issues.
!!! My module assumes to input the real parts and imagnary parts separately.
./complex_layers
__init__.py
activations.py
def CReLU
def zReLU
def modReLU
... ...
networks.py
class complex_Dense
class complex_Conv2D
class conplex_Conv2DTranspose
class complex_Conv1D
class complex_Conv1dTrasnpose
class complex_MaxPooling
normalization.py
class complex_NaiveBatchNormalization
class complex_Dense_BatchNorm
class complex_BatchNorm1D
class complex_BatchNorm2D
def complex_BatchNormalization
def complex_BatchNormalization1D
def complex_BatchNormalization2D
./spectral_layers
__init__.py
STFT.py
class STFT_network
class ISTFT_network
Ex 1, (real, imag) -> complex_conv2d -> complex_activation -> complex_batchnorm
from complex_layers.networks import *
from complex_layers.activation import *
from complex_layers.normalization import *
real_inputs = tf.keras.Input(shaep = (64, 64, 1))
imag_inputs = tf.keras.Input(shape = (64, 64, 1))
real, imag = complex_Conv2D(**argments)(real_inputs, imag_inputs)
real, imag = CReLU(real, imag)
real, imag = complex_BatchNormalization2D(real, imag)
real_inputs = tf.keras.Input(shaep = (64, 64, 1))
imag_inputs = tf.keras.Input(shape = (64, 64, 1))
real, imag = complex_BatchNormalization2D(real, imag)
Ex 2, (real, imag) -> complex_batchnorm with model.summary()
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 64, 64, 1)] 0
__________________________________________________________________________________________________
input_2 (InputLayer) [(None, 64, 64, 1)] 0
__________________________________________________________________________________________________
tf_op_layer_concat (TensorFlowO [(None, 64, 64, 2)] 0 input_1[0][0]
input_2[0][0]
__________________________________________________________________________________________________
complex__batch_norm2d (complex_ (None, 64, 64, 2) 10 tf_op_layer_concat[0][0]
__________________________________________________________________________________________________
tf_op_layer_strided_slice (Tens [(None, 64, 64, 1)] 0 complex__batch_norm2d[0][0]
__________________________________________________________________________________________________
tf_op_layer_strided_slice_1 (Te [(None, 64, 64, 1)] 0 complex__batch_norm2d[0][0]
==================================================================================================
Total params: 10
Trainable params: 5
Non-trainable params: 5
class complex_Conv3D
class complex_Conv3DTranspose
class complex_LSTM