-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVII.tex
547 lines (340 loc) · 22.3 KB
/
VII.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
\section{The functor ${ }^{f}$ :}
The inclusion $h: W \rightarrow x$ of a locally subspace of $a$ locally compact space gives rise to a very useful functor $h_{-!}: S h(w) \rightarrow S h(X)$, compare II. 6 and III.7. In order to generalize this notion let us observe that $h$ is a proper map if and only if $W$ is a closed subspace of $X$, III. 6 .
Definition 1.1. Let $f: X \rightarrow Y$ be a continuous map between locally compact spaces. For a sheaf $F$ on $X$ and an open subset $V$ of $Y$ put
$$
\Gamma\left(V, f_{!} F\right)=\left\{\begin{array}{l|l}
s \in \Gamma\left(f^{-1}(V), F\right) & \begin{array}{l}
\operatorname{supp}(s) \xrightarrow{f} Y \\
\text { is a proper map }
\end{array}
\end{array}\right\}
$$
We consider $f_{!} F$ as a subpresheaf of $f_{*} F$.
Proposition 1.2. The presheaf $f_{!} F$ is a sheaf on $Y$.
begin{proof} It suffices to prove that the map $f: X \rightarrow Y$ has the following property:
Given a family $\left(V_{i}\right)' \in$ of open subsets of $Y$ with union $V$ and a closed subset $S$ of $f^{-1}(V)$. If the restriction $f: s \cap V_{i} \rightarrow V_{i}$ is proper for all $i$, then the restriction $f: \mathrm{S} \rightarrow V$ is proper.
Let $K$ be a compact subset of $V$. We are going to construct a family $\left(K_{i}\right)_{i \in I}$ of compact subsets of $K_{\text {, with }} K_{i} \subseteq V_{i}$ for each $i \in I$, whose union is $K$ and such that $K_{i}$ is empty except for finitely many $i \epsilon I$.
For the construction of the $K_{i}$ 's we may assume that I is a finite set by Borel-Heine. For $x \in K$ choose a compact neighbourhood $K_{x}$ of $x$ contained in some $\mathrm{v}_{i}, i \in I$. Using Borel-Heine we obtain a finite covering of $K$ by compact subsets of $K$ each of which is contained in some $V_{i}$, $i \in I$. Let $K_{i}$ be the union at those of the components of the covering which are contained in $U_{\dot{1}}$. This gives the desired family $\left(K_{i}\right)_{i \in I}$. To conclude the proof notice that
$$
s \cap f^{-1}(K)=s \cap f^{-1}\left(U K_{i}\right)=U\left(S \cap f^{-1}\left(K_{i}\right)\right)
$$
which shows that $S \cap f^{-1}(K)$ is compact.
end{proof}
Let us consider the left exact functor
1.3
$$
f_{!}: \SH(X) \longrightarrow \Sh(Y)
$$
The i'th derived functor evaluated on the sheaf $F$ will be denoted $R^{i} f_{!} F$.
Theorem 1.4. Let $E: X \rightarrow Y$ denote a continuous map between locally compact spaces. For $y \in Y$ we have a natural isomorphism
$$
\left(R^{i} f_{!} F\right)_{y}=H_{c}^{i}\left(f^{-1}(y), F\right) \quad ; i \in \BbbZ
$$
as $F$ varies through the category of sheaves on $x$.
begin{proof} Let us first treat the case $i=0$. Consider an open neighbourhood $V$ of $y$ in $Y$ and the restriction
$$
\Gamma(V, f, F) \rightarrow \Gamma\left(f^{-1}(y), F\right)
$$
Consider a $s \in \Gamma\left(V, f_{!} F\right)$ which maps to zero. This means that Supp(s) $\cap f^{-1}(y)$ is empty or otherwise expressed $y \notin f(\operatorname{Supp}(s))$. Let $W$ denote the complement of Supp ( $s$ ) in $V$, this is an open neighbourhood of $y$ to which the restriction of $s$ is zero. Thus we have proved that the restriction
$$
\left(f_{!} F\right)_{y} \rightarrow \Gamma_{c}\left(f^{-1}(y), F\right)
$$
is injective. In case $F$ is soft the restriction map is surjective as it follows by remarking that $\Gamma_{c}(X, F)$ is a subgroup of $\Gamma(Y, f, F)$ and that restriction from $\Gamma_{c}(X, F)$ to $\Gamma_{c}\left(f^{-1}(Y), F\right)$ is surjective III.2.6. - In the general case consider an exact sequence $0 \rightarrow F \rightarrow S \rightarrow T$ with $S$ and $T$ soft and use the resulting diagram
\begin{center}
\includegraphics[max width=\textwidth]{2024_03_22_0f4161bdf598cd7e5dd2g-326}
\end{center}
to conclude that restriction is an isomorphism. - Let us now choose an injective resolution $F \rightarrow I^{\bullet}$. We have
$$
\left(R^{i_{f}}{ }_{!}\right)_{Y}=\left(H^{i} E_{!} I^{*}\right)_{Y}=H^{i}\left(f_{!} I^{*}\right)_{Y}=H^{i} \Gamma_{C}\left(f^{-1}(Y), I^{*}\right)
$$
The result follows by noticing that the restriction of $I^{*}$ to $f^{-1}(y)$ is a soft resolution of the restriction of $F$ to $f^{-1}(y)$, III.2.5.
end{proof}
A diagram as below is called cartesian if $(c, h): A \rightarrow X \times B$ induces an isomorphism between $A$ and the subspace $\{(x, b) \in X \times B \mid f(x)=p(b)\}$ of $X \times B$.
Corollary 1.5. Consider a cartesian square of locally compact spaces. For any sheaf $F$ on $X$ $A \rightarrow x$ we have
$$
p^{*} R^{i_{1}}{ }_{!} F \xrightarrow[\rightarrow]{\sim} R^{i_{h}} q^{*} F \quad ; i \in \BbbZ
$$
\begin{center}
\includegraphics[max width=\textwidth]{2024_03_22_0f4161bdf598cd7e5dd2g-326(1)}
\end{center}
begin{proof} The canonical morphism
$$
p^{\star} f_{!} F \longrightarrow h_{!} q^{*} F
$$
Coroilary 1.6. Let $f: X \rightarrow Y$ denote a continuous map between locally compact spaces. A soft sheaf $S$ on $x$ is transformed into a soft sheaf $f_{!} S$ on $Y$. Moreover $R^{i} f_{!} S=0$ for $i>0$.
begin{proof} Let us prove that for any compact subset $K$ of $Y$ and any sheaf $S$ on $x$
1.7
$$
\Gamma(K, f, S)=\Gamma_{C}\left(E^{-1}(K), S\right)
$$
To this end let $p: K \rightarrow Y$ and $g: f^{-1}(\mathrm{~K}) \rightarrow X$ denote the inclusions and $h: f^{-1}(K) \rightarrow K$ the restriction of $f$. According to 1.5 we have $p^{\star} f_{!} S=h_{!} q^{\star} S$. Apply $\Gamma(K,-)$ to this identity to get 1.7 .
In case $S$ is soft we shall prove that $f_{!} S$ is soft, i.e. that the restriction map
$$
\Gamma\left(Y, f_{!} \mathrm{S}\right) \longrightarrow \Gamma\left(K, f_{!} \mathrm{S}\right)
$$
is surjective. Notice that $\Gamma\left(Y, f_{!} S\right)$ contains $\Gamma_{c}(X, S)$ as
a subgroup. Restriction from this group to $\Gamma_{c}\left(f^{-1}(K), S\right)$ is surjective according to III.2.6 and the result follows from 1.7 . The second part follows from 1.4 by localization using the fact that $S$ induces soft sheaves on any of the fibres of $f$, III.2.5.
end{proof}
is an isomorphism as one sees by localization using 1.5 and identification of the fibre of $h$ over $b \in B$ with the fiber of $f$ over $p(b)$. Let us remark that in case $S$ is soft, then $q^{*} S$ is acyclic for $h_{!}$: Notice that $q^{\star} S$ induces soft sheaves on the fibres of $h$ and apply 1.4. For a soft resolution $S^\bullet$ of $F$ we have
$$
p^{\star} H^{i} f_{!} S^{*}=H^{i} p^{\star} f_{!} S^{*}=H^{i} h_{!} q^{\star} S^{*}
$$
from which the result follows using I.7.5.
end{proof}
Let us now consider a commutative ring $k$ and interprete f! as a functor
$$
f_{!}: \Sh(X, k) \longrightarrow \Sh(Y, k)
$$
and similarly for the derived functor
1.8
$$
R f_{!}: D^{+}(X, k) \longrightarrow D^{+}(Y, k)
$$
Given two continuous maps between locally compact spaces $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ then it is easily seen that
1.9
$$
(f \circ g)_{!}=g_{!} \circ f_{!}
$$
and as a consequence of 1.6 and $I .7 .15$
\section{2 The Künneth formula}
Let $k$ denote a noetherian ring and $f: X \rightarrow Y$ a continuous map of locally compact spaces both of finite dimension. We are first going to construct with the notation of XI. 2 a functor
$$
\operatorname{Rf}_{!}: D^{-}(X, k) \longrightarrow D^{-}(Y, k)
$$
on the basis of the following
Lemma 2.2. Let $x$ denote a locally compact space of finite dimension and $k$ a commutative ring. Given a soft sheaf $S$ and a sheaf $F$ on $X$. If either $S$ or $F$ is flat then $S \otimes_{k} F$ is a soft sheaf.
begin{proof} In case $S$ is flat we can use the proof of $v \cdot 1.3$. In case $F$ is flat, that proof needs a small modification: notice that $K=\ker \partial_{n-1}$ is a flat sheaf II.11.1.
end{proof}
Lemma 2.3. Let $x$ denote a locally compact space of finite dimension and $k$ a noetherian ring. For any $F^{*}$ in $K^{-}(X, k)$ there exists a quasi-isomorphism $F^\bullet \rightarrow T^\bullet$ in $K^{-}(X, k)$ where $T^\bullet$ is a complex of soft sheaves (a soft resulution of $F^{*}$ )
begin{proof} Choose according to VI. 1.3 a quasi-isomorphism $k \rightarrow S^{\circ}$ where $S^{*}$ is a bounded complex of soft and flat sheaves.
According to II.11.2 this gives a quasi-isomorphism $F^{\bullet} \rightarrow \mathrm{S}^{\bullet} \otimes F^{\bullet}$. The complex $\mathrm{S}^{\bullet} \otimes F^\bullet$ is a bounded above complex of soft sheaves by Lemma 2.2 .
Construction of $\mathrm{Rf}_{1}: D^{-}(X, k) \rightarrow D^{-}(Y, k)$
Let $S^{-}(x, k)$ denote the homotopy category of bounded above complexes of soft k-sheaves. It follows from 2.2 and XI. 2 that we may identify $D^{-}(X, k)$ with the category obtained by inverting all quasi-isomorphisms in $S^{-}(x, k)$. - The functor f! extends to a functor
$$
f_{!}: S^{-}(X, k) \longrightarrow S^{-}(Y, k)
$$
according to 1.6 . It remains to establish that $f_{!}$transforms quasi-isomorphisms into quasi-isomorphisms. To see this remark that $R^{n} f_{!}=0$ for $n>\operatorname{dim} x$ and use I.7.6.
Let us remark that the functor $f^{*}: \Sh(Y, k) \rightarrow \Sh(X, k)$ being exact extends immediately to a functor
$$
f^{*}: D^{-}(Y, k) \longrightarrow D^{-}(X, k)
$$
With the notations above and the notation of II. 11.10 we have the fundamental
Projection formula 2.4.
$$
\operatorname{Rf}_{!}\left(F^\bullet \stackrel{L}{\otimes} f^{\star} G^{*}\right)=\left(R_{!} F^{*}\right) \stackrel{L}{\otimes} G^{*}
$$
for $F^\bullet$ in $D^{-}(X, k)$ and $G$ in $D^{-}\left(Y^{*}, k\right)$.
begin{proof} Let us first prove that for a sheaf $F$ on $x$ and a flat sheaf $G$ on $Y$ there is a canonical isomorphism
2.5
$$
f_{!}(F) \otimes G \similarrightarrow f_{!}\left(F \otimes f^{*} G\right)
$$
Let us first notice that there is a natural transformation from the left hand side of the formula to the right hand side. Thus it follows from 1.4 that we may assume that $Y$ is a point. Next, let us remark that both sides of the formula are left exact functors in F. Thus we may assume that $F$ is soft.
It is now time to vary the k-module G. The case where $G$ is a free module follows from the fact that $\Gamma_{c}$ preserves direct sums, III.5.1. In general consider an exact sequence
$$
0 \rightarrow L_{2} \rightarrow L_{1} \rightarrow L_{0} \rightarrow G \rightarrow 0
$$
where $L_{1}$ and $L_{0}$ are free modules. Since $G$ is flat we can conclude that $L_{2}$ is flat. There results an exact sequence of sheaves on $X$
$$
0 \rightarrow S \otimes L_{2} \rightarrow S \otimes L_{1} \rightarrow S \otimes L_{0} \rightarrow S \otimes G \rightarrow 0
$$
This is a sequence of soft sheaves on $x$ by 2.2 . It follows from 1.7 .5 that the sequence
$$
0 \rightarrow \Gamma_{c}\left(X, S \otimes L_{2}\right) \rightarrow \Gamma_{c}\left(X, S \otimes L_{1}\right) \rightarrow \Gamma_{c}\left(X, S \otimes L_{0}\right) \rightarrow \Gamma_{c}(X, S \otimes G) \rightarrow 0
$$
is exact, in particular we deduce a commutative exact diagram
\begin{center}
\includegraphics[max width=\textwidth]{2024_03_22_0f4161bdf598cd7e5dd2g-332}
\end{center}
from which we conclude that the vertical arrow to the right is an isomorphism. This proves 2.5 .
Let us notice that in case $F$ is soft, then $F \otimes f^{*} G$ is soft as it follows from 2.2 and the fact that $f *_{G}$ is flat. With this remark in hand it is a simple matter to extend the formula 2.5 to the derived categories.
end{proof}
Base change 2.6. Consider a cartesian square of locally compact spaces of finite dimension. Then
\begin{center}
\includegraphics[max width=\textwidth]{2024_03_22_0f4161bdf598cd7e5dd2g-332(1)}
\end{center}
$$
p^{\star} \mathrm{Rf}_{!} F^\bullet \longrightarrow \mathrm{Rh}_{!} q^{\star} F^{\bullet}
$$
for all $F^{-}$in $D^{-}(X, k)$.
begin{proof} Let us remark that a soft sheaf $S$ on $x$ transforms into a sheaf $q^{\star} S$ on $A$ which is acyclic for $h_{!}$as it follows from 1.5 and 1.6. For a complex $S^{-}$in $K^{-}(x, k)$ choose a soft resolution $q^{*} S^{*} \rightarrow T^{*}$ in $K^{-}(A, k)$. According to 1.6 we have
$$
p^{*} f_{!} S^{\bullet} \similarrightarrow h_{!} q^{*} S^{*} \rightarrow h_{!} T^{*}
$$
The second arrow is a quasi-isomorphism by I.7.7.
With the notation of 2.6 put $c=f q=p h$.
Künneth formula 2.7.
$$
\mathrm{Rc}_{!}\left(h^{\star} E^\bullet \otimes G^{\star} F^{\bullet}\right)=\left(\mathrm{Rp}_{!} E^\bullet\right)^{L}\left(\mathrm{Rf}_{!} F^{*}\right)
$$
for $E^\bullet$ in $D^{-}(B, k)$ and $F^{-}$in $D^{-}(X, k)$.
begin{proof} Use first the projection formula 2.4 and next the base change formula 2.6 to get
$$
R q_{!}\left(h^{\star} E^{*} \otimes q^{\star} F^{*}\right)=R q_{!}\left(h^{*} E^{*}\right) \stackrel{L}{\&}=f *\left(R p_{!} E^{*}\right) \stackrel{L}{L} F^{*}
$$
Apply $\mathrm{Rf}_{!}$to this and use $\mathrm{Rc}_{!}=\mathrm{Rf}_{!} \circ \mathrm{Rq}_{!}$to get
$$
R c_{!}\left(h^{\star} E^{*} \otimes q^{*} F\right)=R F_{!}\left(f^{*}\left(R p_{!} E^{*}\right) \stackrel{L}{\otimes} F^{*}\right)
$$
Apply the projection formula once more to get the result.
end{proof}
In particular for two locally compact spaces $X$ and $Y$ of finite dimension and a noetherian ring $k$
$$
2.8 \quad R \Gamma_{C} \cdot(X \times Y, k)=R \Gamma_{C} \cdot(X, k) \stackrel{L}{\otimes_{k}} R \Gamma_{C} \cdot(Y, k)
$$
\section{Giobal form of Verdier duality}
Let $k$ be a noetherian ring and $f: X \rightarrow Y$ a continuous map between locally compact spaces of finite dimension.
Theorem 3.1. There exists an additive functor
$$
f^{!}: D^{+}(Y, k) \rightarrow D^{+}(X, k)
$$
and a natural isomorphism
$$
\left[\operatorname{Rf}_{!} F^{\bullet}, G^{*}\right] \stackrel{\sim}{\simeq}\left[F^{\bullet}, f^{!} G^{\bullet}\right]
$$
as $F^\bullet$ varies through $D^{+}(X, k)$ and $G^\bullet$ varies through $D^{+}(Y, k)$.
begin{proof} We shall follow the proof of VI.1.1 closely and give the needed modifications. For a soft and flat sheaf $S$ on $X$ and a sheaf $G$ on $Y$ the functor
$$
F \longrightarrow \hom\left(f_{!}(S \otimes F), G\right)
$$
from $\Sh(x, k)$ to the category of $k$-modules transforms kernels into cokernels and direct sums into direct products: To see this notice that the functor $F \mapsto f_{!}(S \otimes F)$ is exact as it follows from 2.2 and 1.6 . The same functor preserves direct sums or more generally direct limits as it follows from 1.4 and III.5.
\begin{enumerate}
\item With $S$ and $G$ as above, the presehaf on $x$
\end{enumerate}
$U \longmapsto \hom\left(f_{!}\left(S_{U}\right), G\right)$\\
is a sheaf on $\dot{x}$, here $s_{U}=j_{!} j^{*} S=S \otimes j_{!} k$ where $j: U \rightarrow X$ denotes the inclusion: For open subsets $U$ and $V$ of $x$ consider the transform of the exact sequence
\begin{center}
\includegraphics[max width=\textwidth]{2024_03_22_0f4161bdf598cd7e5dd2g-335}
\end{center}
by the functor $F \mapsto H O m\left(f_{!}(S \otimes F), G\right)$.
\begin{enumerate}
\setcounter{enumi}{1}
\item Let $f^{!}(5, G)$ denote the above sheaf on $x$. Here $S$ is a k-flat and soft sheaf on X and $G$ is any sheaf on $Y$.
\item There is a canonical isomoprphism
\end{enumerate}
$\hom\left(f_{!}(F \otimes S), G\right) \similarrightarrow \hom(F, f !(S, G))$
as $F$ varies through the category $\Sh(X, k)$. - Let us first establish the identification
3.3
$$
f_{\star} f^{!}(\mathrm{S}, G)=\hom\left(f_{!} \mathrm{S}, G\right)
$$
To this end consider the inclusion $j: V \rightarrow Y$ of an open subset of $Y$ and notice that
$$
\hom\left(j * f_{!} S, j * G\right)=\hom\left(j_{!} j^{\star} f_{l} S, G\right)=\hom\left(f_{!}\left(S_{f^{-1}(V)}\right), G\right)
$$
as it follows by the base change property 1.5. -
By adjunction we deduce from 3.3 a morphism of sheaves
$$
f \star \hom(f, S, G) \rightarrow f^{!}(S, G)
$$
Let us now depart from the morphism $\quad f_{\star} F \otimes f_{!} S \rightarrow f_{!}(F \otimes S)$\\
and deduce first a morphism, II. 12
$$
\hom\left(f_{!}(F \otimes S), G\right) \rightarrow \hom\left(f_{\star} F, \hom\left(f_{!} S, G\right)\right)
$$
and by adjunction a morphism
$$
\hom\left(f_{!}(F \otimes S), G\right) \rightarrow \hom\left(F, f_{\star} \hom\left(f_{!} S, G\right)\right)
$$
Combine this with the morphism above to get
$$
\hom(f,(F \otimes S), G) \rightarrow \hom\left(F, f^{!}(S, G)\right)
$$
To prove that this is an isomorphism we shall vary $F$. It suffices to check the case $F=j, k$ where $j$ is the inclusion of an open subset of $X$.
4-7) Needs no essential modifications.
end{proof}
Example 3.4. Let $h: W \rightarrow x$ denote the inclusion of $a$ locally closed subspace. With the notation of II. 6 the functor
$$
h^{!}: \Sh(x, k) \rightarrow \Sh(W, k)
$$
is left exact and transforms injectives into injectives. Thus it extends to a functor
$$
h^{!}: D^{+}(x, k) \rightarrow D^{+}(w, k)
$$
which is a right adjoint to the functor $h_{1}$ described in II. 6 . This provides an extension of Theorem 3.1 for this kind of immersions beyond the framwork of locally compact spaces. The case of a closed subspace will be explored in Chapter VIII.
Let $f: X \rightarrow Y$ be a finite covering space of degree $n$, i.e. for each point $y \in Y$ there exists an open neighbourhood $V$ of $y$ such that $f: f^{-1}(V) \rightarrow V$ is isomorphic to the projection $V \times[1, n] \rightarrow V$. For a sheaf $F$ on $x$ and $y \in Y$ we have a canonical isomorphism
\section{Covering spaces}
$4=1$
$$
\left(f_{\star} F\right)_{y} \similarrightarrow \underset{x \in f^{-1}(y)}{\oplus} F_{x}
$$
from which we conclude that the functor
$$
\text { 4.2 } f_{\star}: \Sh(X, k) \rightarrow \Sh(Y, k) \text { is exact }
$$
For a sheaf $G$ on $Y$ we deduce from 4.1 an isomorphism on the stalks at $y \in Y$
$$
\left(f_{*} f^{*} G\right) \similarrightarrow \underset{x \in f^{-1}(y)}{ }{ }^{G} y
$$
Compose this with "summation" to get the trace map
$$
4.3 \quad \operatorname{tr}_{y}:\left(f^{*} f_{\star} G\right)_{y} \rightarrow G_{y} \quad ; y \in Y
$$
There exists a unique morphism of sheaves
4.4
$$
\operatorname{tr}: f_{\star} f^{\star} G \longrightarrow G
$$
whose stalks are those recorded in 4.3: Uniqueness follows from II.2.2.i. By II. 12 the problem is local on Y. Thus it suffices to treat the case where the covering is trivial which\\
is left to the reader. - For a sheaf $F$ on $X$ the trace map induces an isomorphism
4.5
$$
\hom(F, f * G) \xrightarrow[\rightarrow]{\sim} \hom(f, F, G)
$$
begin{proof} The construction above yields more generally a morphism of sheaves on $Y$
4.6
$$
f_{\star} \hom\left(F, f^{*} G\right) \rightarrow \hom\left(f_{\star} F, G\right)
$$
We shali in fact prove that the morphism 4.6 is an isomorphism: The new problem is local on Y. Thus it suffices to treat the case of a trivial covering which is left to the reader.
end{proof}
Corollary 4.7. The pull back functor
$$
f^{\star}: \Sh(Y, k) \rightarrow \Sh(X, k)
$$
transforms injectives into injectives.
begin{proof} Follows formally from the presence of a left adjoint which is exact by 4.2 .
From our discussion follows that in the case where $x$
and $Y$ are locally compact we have $E^{!}=E^{*}$ in this particular case of Verdier duality 2.1.
For a sheaf $G$ on $Y$ let res: $G \rightarrow f_{\star} f^{*} G$ denote the standard adjunction morphism, II.4.9. By localization on $Y$ follows that
4.8
$$
\text { trores }=n
$$
Let us consider an injective resolution $\underset{\sim}{k} \rightarrow G^{\circ}$. Apply the functor $H \cdot \Gamma(Y,-)$ to the morphisms
4.9
$$
G \cdot \xrightarrow{\text { res }} f_{\star} f^{\star} G^{*} \xrightarrow{\text { tr }} G^{*}
$$
to obtain morphisms on cohomology $f^{*}=$ res
4.10
$$
H^{*}(Y, k) \xrightarrow{\text { res }} H^{*}(x, k) \xrightarrow{\text { tr }} H^\bullet(Y, k)
$$
which satisfies the relation 4.8 . Notice that
$4 \cdot 11$
$\operatorname{tr}\left(f^{\star} \eta \cup \xi\right)=\eta \cup \operatorname{tr}(\xi)$
; $\eta \in H^{\bullet}(Y, k), \xi \in H^{*}(X, k)$
as it follows from the construction above.
\section{5 Local form of Veraier duality}
In this section we shall give a local version of Verdier duality. To do so we shall use the general theory of derived categories as exposed in Chapter XI.
Given a topological space and a commutative ring k. For $F^{*}$ in $D^{-}(X, k)$ and $F^{*}$ in $D^{+}(X, k)$ we shall define $R \hom^{*}(E, F)$ in $D^{+}(X, k)$ : choose an injective resolution $F^{+} \rightarrow J^{+}$and put 5.1 $\quad \operatorname{RHOm}\left(E^{\bullet}, F^{*}\right)=\hom\left(E^{\bullet}, J^{*}\right)$.
This takes a particularly simple form if we represent the derived categories as follows $D^{-}(x, k)$ : The category obtained from the homotopy category of bounded above complexes of flat sheaves by inverting all quasi-isomorphisms. $D^{+}(x, k)$ : The homotopy category of bounded below complexes of injective sheaves. In particular, with $E^{*}$ and $F^{-}$such represented, the complex $\mathrm{Hom}^{\circ}\left(E^{\bullet}, F^{\bullet}\right)$ is automatically a bounded below complex of injective sheaves, II. 12.3 .
Theorem 5.2. Let $k$ be a noetherian ring and $f: X \rightarrow Y$ a continuous map of locally compact spaces of finite dimension. There is a natural isomorphism in $D^{+}(X, k)$
\begin{center}
\includegraphics[max width=\textwidth]{2024_03_22_0f4161bdf598cd7e5dd2g-340}
\end{center}
as $E^{*}$ varies through $D^{-}(X, k)$ and $F^{*}$ through $D^{+}(x, k)$.
begin{proof} Let $S$ be a soft and flat sheaf on $x$. The isomorphism 3.2 extends easily to an isomorphism
5.3
$$
\hom(f,(E \otimes S), F)=f_{\star} \hom\left(E, f^{1}(S, F)\right)
$$
as $E$ varies through $\SH(X, k)$ and $F$ through $\SH(Y, k)$. Let us choose a fixed bounded flat and soft resolution $\underset{\sim}{k} \rightarrow s^{\circ}$ on $X_{\text {; VI }}, 1.3$. For a bounded above complex $E^\bullet$ of flat sheaves on $X$ and a bounded below complex $F^{-}$of injective sheaves on $Y$ we deduce from 5.3 an isomorphism.
5.4
$$
\hom\left(f_{!}\left(E^{*} \otimes S^{*}\right), F^{*}\right) \similarrightarrow f_{\star} \hom^{*}\left(E^{*}, f^{!}\left(S^{*}, F^{*}\right)\right)
$$
We can conclude the proof by the following four references: The morphism $E^{*} \rightarrow E^{*} \otimes \mathrm{S}^{*}$ is a soft resolution of $E^{*}$ by 2.2 . The complex $f^{!}\left(\mathrm{S}^{\bullet}, F^{\circ}\right)$ is a bounded below complex of injective sheaves on $X$ as it follows from the proof of 3.1. The complex Hor ${ }^{*}\left(E^{*}, f^{!}\left(S^{*}, F^{*}\right)\right)$ is a bounded below complex of injective sheaves as it follows from II.12.3. Any bounded above complex admits a flat resolution by II.11.8.
end{proof}
Example 5.5. Consider a finite covering $\mathrm{f:} X \rightarrow Y$. Verdier duality is simply represented by the isomorphism 4.6 .