Skip to content

Ar-Ragul/Facial-regnition-attendance

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

#facial-recognition

import cv2, sys, numpy, os from playsound import playsound size = 4 haar_file = "haarcascade_frontalface_alt2.xml" datasets = 'datasets'

Part 1: Create FineRecognizer

print('Recognizing Face Please Be in sufficient Lights...')

Create a list of images and a list of corresponding names

(images, lables, names, id) = ([], [], {}, 0) for (subdirs, dirs, files) in os.walk(datasets): for subdir in dirs: names[id] = subdir subjectpath = os.path.join(datasets, subdir) for filename in os.listdir(subjectpath): path = subjectpath + '/' + filename lable = id images.append(cv2.imread(path, 0)) lables.append(int(lable)) id += 1 (width, height) = (130, 100)

Create a Numpy array from the two lists above

(images, lables) = [numpy.array(lis) for lis in [images, lables]]

OpenCV trains a model from the images

NOTE FOR OpenCV2: remove '.face'

model = cv2.face.LBPHFaceRecognizer_create() model.train(images, lables)

Part 2: Use fisherRecognizer on camera stream

face_cascade = cv2.CascadeClassifier(haar_file) webcam = cv2.VideoCapture(0) sname="" re=1 li=[] while True: (_, im) = webcam.read() gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x, y, w, h) in faces: cv2.rectangle(im, (x, y), (x + w, y + h), (255, 0, 0), 2) face = gray[y:y + h, x:x + w] face_resize = cv2.resize(face, (width, height)) # Try to recognize the face prediction = model.predict(face_resize) cv2.rectangle(im, (x, y), (x + w, y + h), (0, 255, 0), 3)

    if prediction[1]<100:
        cv2.putText(im, '% s - %.0f' % (names[prediction[0]], prediction[1]), (x-10, y-10),  cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0))
        re+=1
        sname=names[prediction[0]]
        if re==30:
            import sqlite3
            conn = sqlite3.connect('regis.db')
            r=conn.cursor()
            r.execute('select * from regis where name=?',(sname,))
            rows=r.fetchall()
            for i in rows:
                li.append(i)
            print(li)
            table_name = 'atta'
            conn = sqlite3.connect('regis.db')
            c = conn.cursor()
            # sql = 
            c.execute('create table if not exists ' + table_name + ' (name varchar(50),rollno varchar(50),class varchar(50),attanance varchar(50))')
            c.execute('insert into '+table_name+'  values (?,?,?,"present")',(li[0][0],li[0][1],li[0][2]))
            conn.commit()
            conn.close()
            print("attanance marked")
            playsound('preview.mp3')
        
    else:
        cv2.putText(im, 'not recognized',(x-10, y-10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0))
        
cv2.imshow('OpenCV', im) 
  
key = cv2.waitKey(10) 
if key == 27:
    break

webcam.release() cv2.destroyAllWindows()

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published