-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
48 lines (48 loc) · 1.36 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Type: Package
Package: NeEDS4BigData
Title: New Experimental Design Based Subsampling Methods for Big Data
Version: 1.0.0
Authors@R: person(given = "Amalan", family = "Mahendran", email = "[email protected]", role = c("aut", "cre"),comment = c(ORCID = "0000-0002-0643-9052"))
Maintainer: The package maintainer <[email protected]>
Description: Subsampling methods for big data under different models and assumptions.
Starting with linear regression and leading to Generalised Linear Models, softmax
regression and quantile regression. Specially, the model robust subsampling method
proposed by Mahendran et al (2023) (<doi:10.1007/s00362-023-01446-9>) when multiple
models can describe the big data.
License: MIT + file LICENSE
URL:
https://github.com/Amalan-ConStat/NeEDS4BigData,https://amalan-constat.github.io/NeEDS4BigData/index.html
BugReports: https://github.com/Amalan-ConStat/NeEDS4BigData/issues
Depends:
R (>= 4.0.0)
Imports:
dplyr,
foreach,
gam,
ggh4x,
ggplot2,
ggridges,
matrixStats,
mvnfast,
psych,
Rdpack,
Rfast,
rlang,
stats,
tidyr
RdMacros: Rdpack
Suggests:
doParallel,
ggpubr,
kableExtra,
knitr,
parallel,
rmarkdown,
spelling,
testthat
Encoding: UTF-8
Language: en-GB
LazyData: true
LazyDataCompression: xz
RoxygenNote: 7.3.1
Config/testthat/edition: 3