Skip to content

Commit

Permalink
rename files to make room for vega-altair episode
Browse files Browse the repository at this point in the history
  • Loading branch information
bast committed Nov 2, 2024
1 parent de2245d commit 649dcd1
Show file tree
Hide file tree
Showing 7 changed files with 10 additions and 10 deletions.
8 changes: 4 additions & 4 deletions content/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,13 +10,13 @@ Python for Scientific Computing
Whether you are or aren't, the course material is below. Videos
will appear in `this playlist <https://www.youtube.com/playlist?list=PLZLVmS9rf3nNI3oQEqSJW6yXltOAZnkpa>`__.


Python is a modern, object-oriented programming language, which has
become popular in several areas of software development. This course
discusses how Python can be utilized in scientific computing. The
course starts by introducing some of the main Python tools for
computing: Jupyter for interactive analysis, NumPy and SciPy for
numerical analysis, matplotlib for visualization, and so on. In
numerical analysis, Matplotlib for visualization, and so on. In
addition, it talks about *how* python is used:
related scientific libraries, reproducibility, and the broader
ecosystem of science in Python, because your work is more than the raw
Expand Down Expand Up @@ -71,7 +71,7 @@ to learn yourself as you need to.
60 min ; :doc:`numpy` or :doc:`numpy-advanced`
60 min ; :doc:`pandas`
30 min ; :doc:`xarray`
60 min ; :doc:`data-visualization`
60 min ; :doc:`plotting-matplotlib`
30 min ; :doc:`data-formats`
60 min ; :doc:`scripts`
40 min ; :doc:`profiling`
Expand All @@ -96,7 +96,7 @@ to learn yourself as you need to.
numpy-advanced
pandas
xarray
data-visualization
plotting-matplotlib
data-formats
scripts
profiling
Expand Down
12 changes: 6 additions & 6 deletions content/data-visualization.md → content/plotting-matplotlib.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Data visualization with Matplotlib
# Plotting with Matplotlib

```{questions}
- What happens if you can't automatically produce plots?
Expand Down Expand Up @@ -101,7 +101,7 @@ ax.set_title("some title")
# fig.savefig("my-first-plot.png")
```

```{figure} data-visualization/first-plot/getting-started.png
```{figure} plotting-matplotlib/first-plot/getting-started.png
:alt: Result of our first plot
:width: 80%
Expand Down Expand Up @@ -142,7 +142,7 @@ matplotlib.use("Agg")
[quick start guide](https://matplotlib.org/stable/users/explain/quick_start.html).
- At the end it should look like this one:
```{figure} data-visualization/first-plot/exercise.png
```{figure} plotting-matplotlib/first-plot/exercise.png
:alt: Result of the exercise
```
Expand Down Expand Up @@ -321,12 +321,12 @@ In this exercise we will learn how to use log scales.
```
This is the result but we realize that a linear scale is not ideal here:
```{figure} data-visualization/customizing/gapminder-linear.png
```{figure} plotting-matplotlib/customizing/gapminder-linear.png
:alt: Gapminder data plotted using a linear scale
```
- Your task is to switch to a log scale and arrive at this result:
```{figure} data-visualization/customizing/gapminder-log.png
```{figure} plotting-matplotlib/customizing/gapminder-log.png
:alt: Gapminder data plotted using log scale
```
Expand Down Expand Up @@ -365,7 +365,7 @@ Your task is to make the tickmarks and the axis label font larger, using
[Matplotlib parts of a figure](https://matplotlib.org/stable/users/explain/quick_start.html#parts-of-a-figure)
and web search, and to arrive at this:
```{figure} data-visualization/customizing/gapminder-larger-font.png
```{figure} plotting-matplotlib/customizing/gapminder-larger-font.png
:alt: Gapminder data plotted with larger font and larger ticks
```
````
Expand Down

0 comments on commit 649dcd1

Please sign in to comment.