Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create an OPERA RGB workflow #221

Open
wants to merge 7 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,10 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [PEP 440](https://www.python.org/dev/peps/pep-0440/)
and uses [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [0.7.0]

## Added
* `opera_rgb.py`, a workflow for creating OPERA RTC RGB decompositions.

## [0.6.0]

Expand Down
1 change: 1 addition & 0 deletions environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ dependencies:
- pytest-cov
# For running
- astropy
- asf_search
- boto3
- fiona
- gdal>=3.7
Expand Down
2 changes: 2 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ classifiers=[
]
dependencies = [
"astropy",
"asf_search",
"fiona",
"gdal>=3.3",
"numpy",
Expand All @@ -41,6 +42,7 @@ make_composite = "asf_tools.composite:main"
water_map = "asf_tools.hydrosar.water_map:main"
calculate_hand = "asf_tools.hydrosar.hand.calculate:main"
flood_map = "asf_tools.hydrosar.flood_map:main"
opera_rgb = "asf_tools.opera_rgb:main"

[project.entry-points.hyp3]
water_map = "asf_tools.hydrosar.water_map:hyp3"
Expand Down
158 changes: 158 additions & 0 deletions src/asf_tools/opera_rgb.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
"""Create a georefernced RGB decomposition RTC image from two input OPERA RTCs"""
import argparse
from pathlib import Path
from typing import Optional

import asf_search
import numpy as np
from osgeo import gdal, gdalconst


gdal.UseExceptions()


def prep_data(granule: str):
"""Download and prepare the data needed to create an RGB decomposition image.

Args:
granule: OPERA granule name.

Returns:
Tuple of co-pol, cross-pol, and mask filenames, None for each if not available.
"""
result = asf_search.granule_search([granule])[0]
urls = [result.properties['url']]
others = [x for x in result.properties['additionalUrls'] if 'tif' in x]
urls += others

names = [Path(x).name for x in urls]
copol, crosspol, mask = [None, None, None]

for name in names:
image_type = name.split('_')[-1].split('.')[0]
if image_type in ['VV', 'HH']:
copol = name

if image_type in ['VH', 'HV']:
crosspol = name

if image_type == 'mask':
mask = name

if copol is None or crosspol is None:
raise ValueError('Both co-pol AND cross-pol data must be available to create an RGB decomposition')

asf_search.download_urls(urls, path='.')
return copol, crosspol, mask


def normalize_browse_image_band(
band_image: np.ndarray, min_percentile: int = 3, max_percentile: int = 97
) -> np.ndarray:
"""Normalize a single band of a browse image to remove outliers.

Args:
band_image: A single band numpy array to normalize.
min_percentile: Lower percentile to clip outliers to.
max_percentile: Upper percentile to clip outliers to.

Returns:
A normalized numpy array.
"""
vmin = np.nanpercentile(band_image, min_percentile)
vmax = np.nanpercentile(band_image, max_percentile)

# gamma correction: 0.5
is_not_negative = band_image - vmin >= 0
is_negative = band_image - vmin < 0
band_image[is_not_negative] = np.sqrt((band_image[is_not_negative] - vmin) / (vmax - vmin))
band_image[is_negative] = 0
band_image = np.clip(band_image, 0, 1)
return band_image


def create_decomposition_rgb(
copol_path: str, crosspol_path: str, output_path: str, alpha_path: Optional[str] = None
) -> None:
"""Create a georeferenced RGB decomposition RTC image from co-pol and cross-pol RTCs.

Args:
copol_path: Path to co-pol RTC.
crosspol_path: Path to cross-pol RTC.
output_path: Path to save resulting RGB image to.
alpha_path: Path to alpha band image. If not provided, the alpha band will be the valid data mask.
"""
band_list = [None, None, None]

for filename, is_copol in ((copol_path, True), (crosspol_path, False)):
gdal_ds = gdal.Open(filename, gdal.GA_ReadOnly)

gdal_band = gdal_ds.GetRasterBand(1)
band_image = np.asarray(gdal_band.ReadAsArray(), dtype=np.float32)

if is_copol:
# Using copol as template for output
is_valid = np.isfinite(band_image)
if alpha_path is None:
alpha_band = np.asarray(is_valid, dtype=np.float32)
else:
alpha_ds = gdal.Open(alpha_path, gdal.GA_ReadOnly)
alpha_band = np.asarray(alpha_ds.GetRasterBand(1).ReadAsArray(), dtype=np.float32)

geotransform = gdal_ds.GetGeoTransform()
projection = gdal_ds.GetProjection()
shape = band_image.shape
band_list_index = [0, 2]
else:
band_list_index = [1]

normalized_image = normalize_browse_image_band(band_image)
for index in band_list_index:
band_list[index] = normalized_image

image = np.dstack((band_list[0], band_list[1], band_list[2], alpha_band))

driver = gdal.GetDriverByName('GTiff')
output_ds = driver.Create(output_path, shape[1], shape[0], 4, gdal.GDT_Float32)
output_ds.SetGeoTransform(geotransform)
output_ds.SetProjection(projection)
for i in range(4):
output_ds.GetRasterBand(i + 1).WriteArray(image[:, :, i])


def create_gibs_formatted_image(input_file_name: str, output_file_name: str) -> str:
translated_file_name = 'translated.tif'

warp_config = gdal.WarpOptions(
dstSRS='EPSG:4326', xRes=0.000274658203125, yRes=0.000274658203125, srcNodata=0, dstAlpha=True
)

translate_config = gdal.TranslateOptions(
resampleAlg='average',
format='COG',
creationOptions=['OVERVIEWS=NONE'],
outputType=gdalconst.GDT_Byte,
noData=0,
)

gdal.Translate(translated_file_name, input_file_name, options=translate_config)
gdal.Warp(output_file_name, translated_file_name, options=warp_config)

return output_file_name


def create_gibs_rgb(granule, outpath):
copol, crosspol, mask = prep_data(granule)
unprojected_name = 'rgb_unprojected.tif'
create_decomposition_rgb(copol, crosspol, unprojected_name, mask)
create_gibs_formatted_image(unprojected_name, outpath)


def main():
"""Entrypoint for OPERA RTC decomposition image creation."""
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('granule', nargs=1, default=None, help='OPERA granule name')
parser.add_argument('--outpath', default='rgb.tif', help='Path to save resulting RGB image to')
args = parser.parse_args()

create_gibs_rgb(args.granule[0], args.outpath)
Loading