Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix assert failure when the gainmap has a constant values. #2578

Merged
merged 3 commits into from
Jan 22, 2025
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 18 additions & 9 deletions src/gainmap.c
Original file line number Diff line number Diff line change
Expand Up @@ -704,17 +704,26 @@ avifResult avifRGBImageComputeGainMap(const avifRGBImage * baseRgbImage,

// Scale the gain map values to map [min, max] range to [0, 1].
for (int c = 0; c < numGainMapChannels; ++c) {
const float range = gainMapMaxLog2[c] - gainMapMinLog2[c];
if (range <= 0.0f) {
continue;
}
const float range = AVIF_MAX(gainMapMaxLog2[c] - gainMapMinLog2[c], 0.0f);
const float gainMapGamma = avifUnsignedFractionToFloat(gainMap->gainMapGamma[c]);

for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
// Remap [min; max] range to [0; 1]
const float v = AVIF_CLAMP(gainMapF[c][j * width + i], gainMapMinLog2[c], gainMapMaxLog2[c]);
gainMapF[c][j * width + i] = powf((v - gainMapMinLog2[c]) / range, gainMapGamma);
if (range == 0.0f) {
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
// If the range is 0, the gain map values will be multiplied by zero when tonemapping so the values
// don't matter, but we still need to make sure that gainMapF is in [0,1].
gainMapF[c][j * width + i] = 0.0f;
}
}
} else {
// Remap [min; max] range to [0; 1]
maryla-uc marked this conversation as resolved.
Show resolved Hide resolved
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
float v = gainMapF[c][j * width + i];
v = AVIF_CLAMP(v, gainMapMinLog2[c], gainMapMaxLog2[c]);
v = powf((v - gainMapMinLog2[c]) / range, gainMapGamma);
gainMapF[c][j * width + i] = AVIF_CLAMP(v, 0.0f, 1.0f);
}
maryla-uc marked this conversation as resolved.
Show resolved Hide resolved
}
}
}
Expand Down
73 changes: 71 additions & 2 deletions tests/gtest/avifgainmaptest.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1292,8 +1292,7 @@ TEST_P(CreateGainMapTest, Create) {
(uint32_t)std::round((float)image1->width / downscaling), 1u);
const uint32_t gain_map_height = std::max<uint32_t>(
(uint32_t)std::round((float)image1->height / downscaling), 1u);
std::unique_ptr<avifGainMap, decltype(&avifGainMapDestroy)> gain_map(
avifGainMapCreate(), avifGainMapDestroy);
GainMapPtr gain_map(avifGainMapCreate());
gain_map->image = avifImageCreate(gain_map_width, gain_map_height,
gain_map_depth, gain_map_format);

Expand Down Expand Up @@ -1441,10 +1440,32 @@ INSTANTIATE_TEST_SUITE_P(
/*gain_map_format=*/AVIF_PIXEL_FORMAT_YUV444,
/*min_psnr=*/55.0f, /*max_psnr=*/80.0f)));

TEST(GainMapTest, CreateGainMapConstantFactor) {
// Used only to initialize rgb images.
ImagePtr yuv(avifImageCreate(10, 10, 8, AVIF_PIXEL_FORMAT_YUV444));
testutil::AvifRgbImage base_image(yuv.get(), 8, AVIF_RGB_FORMAT_RGB);
testutil::AvifRgbImage alt_image(yuv.get(), 8, AVIF_RGB_FORMAT_RGB);
for (uint32_t i = 0; i < base_image.width * base_image.height * 3; ++i) {
base_image.pixels[i] = 10;
alt_image.pixels[i] = 200; // 20x factor compared to the base image.
}
GainMapPtr gain_map(avifGainMapCreate());
gain_map->image = avifImageCreate(5, 5, 8, AVIF_PIXEL_FORMAT_YUV444);
avifDiagnostics diag;
avifResult result = avifRGBImageComputeGainMap(
&base_image, AVIF_COLOR_PRIMARIES_SRGB,
AVIF_TRANSFER_CHARACTERISTICS_SRGB, &alt_image, AVIF_COLOR_PRIMARIES_SRGB,
AVIF_TRANSFER_CHARACTERISTICS_SRGB, gain_map.get(), &diag);

ASSERT_EQ(result, AVIF_RESULT_OK)
<< avifResultToString(result) << " " << diag.error;
}

TEST(FindMinMaxWithoutOutliers, AllSame) {
constexpr int kNumValues = 10000;

for (float v : {0.0f, 42.f, -12.f, 1.52f}) {
SCOPED_TRACE(v);
std::vector<float> values(kNumValues, v);

float min, max;
Expand All @@ -1456,10 +1477,58 @@ TEST(FindMinMaxWithoutOutliers, AllSame) {
}
}

TEST(FindMinMaxWithoutOutliers, AllSameExceptOne) {
constexpr int kNumValues = 10000;

for (float v : {42.f, -12.f, 1.52f}) {
SCOPED_TRACE(v);
std::vector<float> values(kNumValues, v);
values[42] = v * 2;

float min, max;
ASSERT_EQ(
avifFindMinMaxWithoutOutliers(values.data(), kNumValues, &min, &max),
AVIF_RESULT_OK);
constexpr float kBucketSize = 0.01f; // Should match the value in gainmap.c
const float kEpsilon = 0.00001f;
if (v > 0) {
EXPECT_NEAR(min, v, kEpsilon);
EXPECT_NEAR(max, v + kBucketSize, kEpsilon);
} else {
EXPECT_NEAR(min, v - kBucketSize, kEpsilon);
EXPECT_NEAR(max, v, kEpsilon);
}
}
}

TEST(FindMinMaxWithoutOutliers, AllSameExceptOneFewValues) {
constexpr int kNumValues = 100; // Not enough values to remove outliers.

for (float v : {42.f, -12.f, 1.52f}) {
SCOPED_TRACE(v);
std::vector<float> values(kNumValues, v);
values[42] = v * 2;

float min, max;
ASSERT_EQ(
avifFindMinMaxWithoutOutliers(values.data(), kNumValues, &min, &max),
AVIF_RESULT_OK);
const float kEpsilon = 0.00001f;
if (v > 0) {
EXPECT_NEAR(min, v, kEpsilon);
EXPECT_NEAR(max, v * 2, kEpsilon); // Outlier is kept.
} else {
EXPECT_NEAR(min, v * 2, kEpsilon); // Outlier is kept.
EXPECT_NEAR(max, v, kEpsilon);
}
}
}

TEST(FindMinMaxWithoutOutliers, Test) {
constexpr int kNumValues = 10000;

for (const float value_shift : {0.0f, -20.0f, 20.0f}) {
SCOPED_TRACE(value_shift);
SCOPED_TRACE("value_shift: " + std::to_string(value_shift));
std::vector<float> values(kNumValues, value_shift + 2.0f);
int k = 0;
Expand Down
Loading