-
Notifications
You must be signed in to change notification settings - Fork 33
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
240 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
import hydra | ||
|
||
import pyrootutils | ||
import os | ||
import torch | ||
|
||
from omegaconf import OmegaConf | ||
import json | ||
from typing import Optional | ||
import transformers | ||
from PIL import Image | ||
from torchvision.transforms.functional import InterpolationMode | ||
|
||
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) | ||
|
||
BOI_TOKEN = '<img>' | ||
EOI_TOKEN = '</img>' | ||
IMG_TOKEN = '<img_{:05d}>' | ||
|
||
IMG_FLAG = '<image>' | ||
NUM_IMG_TOKNES = 32 | ||
NUM_IMG_CODES = 8192 | ||
image_id_shift = 32000 | ||
|
||
|
||
|
||
|
||
def generate(tokenizer, input_tokens, generation_config, model): | ||
|
||
input_ids = tokenizer(input_tokens, add_special_tokens=False, return_tensors='pt').input_ids | ||
input_ids = input_ids.to("cuda") | ||
|
||
generate_ids = model.generate( | ||
input_ids=input_ids, | ||
**generation_config | ||
) | ||
generate_ids = generate_ids[0][input_ids.shape[1]:] | ||
|
||
return generate_ids | ||
|
||
def decode_image_text(generate_ids, tokenizer, save_path=None): | ||
|
||
boi_list = torch.where(generate_ids == tokenizer(BOI_TOKEN, add_special_tokens=False).input_ids[0])[0] | ||
eoi_list = torch.where(generate_ids == tokenizer(EOI_TOKEN, add_special_tokens=False).input_ids[0])[0] | ||
|
||
if len(boi_list) == 0 and len(eoi_list) == 0: | ||
text_ids = generate_ids | ||
texts = tokenizer.decode(text_ids, skip_special_tokens=True) | ||
print(texts) | ||
|
||
else: | ||
boi_index = boi_list[0] | ||
eoi_index = eoi_list[0] | ||
|
||
text_ids = generate_ids[:boi_index] | ||
if len(text_ids) != 0: | ||
texts = tokenizer.decode(text_ids, skip_special_tokens=True) | ||
print(texts) | ||
|
||
image_ids = (generate_ids[boi_index+1:eoi_index] - image_id_shift).reshape(1,-1) | ||
|
||
images = tokenizer.decode_image(image_ids) | ||
|
||
images[0].save(save_path) | ||
|
||
|
||
device = "cuda" | ||
|
||
tokenizer_cfg_path = 'configs/tokenizer/seed_llama_tokenizer.yaml' | ||
tokenizer_cfg = OmegaConf.load(tokenizer_cfg_path) | ||
tokenizer = hydra.utils.instantiate(tokenizer_cfg, device=device, load_diffusion=True) | ||
|
||
transform_cfg_path = 'configs/transform/clip_transform.yaml' | ||
transform_cfg = OmegaConf.load(transform_cfg_path) | ||
transform = hydra.utils.instantiate(transform_cfg) | ||
|
||
model_cfg = OmegaConf.load('configs/llm/seed_llama_14b.yaml') | ||
model = hydra.utils.instantiate(model_cfg, torch_dtype=torch.float16) | ||
model = model.eval().to(device) | ||
|
||
generation_config = { | ||
'temperature': 1.0, | ||
'num_beams': 1, | ||
'max_new_tokens': 512, | ||
'top_p': 0.5, | ||
'do_sample': True | ||
} | ||
|
||
s_token = "[INST] " | ||
e_token = " [/INST]" | ||
sep = "\n" | ||
|
||
|
||
### visual question answering | ||
image_path = "images/cat.jpg" | ||
image = Image.open(image_path).convert('RGB') | ||
image_tensor = transform(image).to(device) | ||
img_ids = tokenizer.encode_image(image_torch=image_tensor) | ||
img_ids = img_ids.view(-1).cpu().numpy() | ||
img_tokens = BOI_TOKEN + ''.join([IMG_TOKEN.format(item) for item in img_ids]) + EOI_TOKEN | ||
|
||
question = "What is this animal?" | ||
|
||
input_tokens = tokenizer.bos_token + s_token + img_tokens + question + e_token + sep | ||
generate_ids = generate(tokenizer, input_tokens, generation_config, model) | ||
decode_image_text(generate_ids, tokenizer) | ||
|
||
### text-to-image generation | ||
prompt = "Can you generate an image of a dog on the green grass?" | ||
input_tokens = tokenizer.bos_token + s_token + prompt + e_token + sep | ||
generate_ids = generate(tokenizer, input_tokens, generation_config, model) | ||
save_path = 'dog.jpg' | ||
decode_image_text(generate_ids, tokenizer, save_path) | ||
|
||
### multimodal prompt image generation | ||
instruction = "Can you make the cat wear sunglasses?" | ||
input_tokens = tokenizer.bos_token + s_token + img_tokens + instruction + e_token + sep | ||
generate_ids = generate(tokenizer, input_tokens, generation_config, model) | ||
save_path = 'cat_sunglasses.jpg' | ||
decode_image_text(generate_ids, tokenizer, save_path) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
import hydra | ||
|
||
import pyrootutils | ||
import os | ||
import torch | ||
|
||
from omegaconf import OmegaConf | ||
import json | ||
from typing import Optional | ||
import transformers | ||
from PIL import Image | ||
from torchvision.transforms.functional import InterpolationMode | ||
|
||
pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) | ||
|
||
BOI_TOKEN = '<img>' | ||
EOI_TOKEN = '</img>' | ||
IMG_TOKEN = '<img_{:05d}>' | ||
|
||
IMG_FLAG = '<image>' | ||
NUM_IMG_TOKNES = 32 | ||
NUM_IMG_CODES = 8192 | ||
image_id_shift = 32000 | ||
|
||
|
||
|
||
|
||
def generate(tokenizer, input_tokens, generation_config, model): | ||
|
||
input_ids = tokenizer(input_tokens, add_special_tokens=False, return_tensors='pt').input_ids | ||
input_ids = input_ids.to("cuda") | ||
|
||
generate_ids = model.generate( | ||
input_ids=input_ids, | ||
**generation_config | ||
) | ||
generate_ids = generate_ids[0][input_ids.shape[1]:] | ||
|
||
return generate_ids | ||
|
||
def decode_image_text(generate_ids, tokenizer, save_path=None): | ||
|
||
boi_list = torch.where(generate_ids == tokenizer(BOI_TOKEN, add_special_tokens=False).input_ids[0])[0] | ||
eoi_list = torch.where(generate_ids == tokenizer(EOI_TOKEN, add_special_tokens=False).input_ids[0])[0] | ||
|
||
if len(boi_list) == 0 and len(eoi_list) == 0: | ||
text_ids = generate_ids | ||
texts = tokenizer.decode(text_ids, skip_special_tokens=True) | ||
print(texts) | ||
|
||
else: | ||
boi_index = boi_list[0] | ||
eoi_index = eoi_list[0] | ||
|
||
text_ids = generate_ids[:boi_index] | ||
if len(text_ids) != 0: | ||
texts = tokenizer.decode(text_ids, skip_special_tokens=True) | ||
print(texts) | ||
|
||
image_ids = (generate_ids[boi_index+1:eoi_index] - image_id_shift).reshape(1,-1) | ||
|
||
images = tokenizer.decode_image(image_ids) | ||
|
||
images[0].save(save_path) | ||
|
||
|
||
device = "cuda" | ||
|
||
tokenizer_cfg_path = 'configs/tokenizer/seed_llama_tokenizer.yaml' | ||
tokenizer_cfg = OmegaConf.load(tokenizer_cfg_path) | ||
tokenizer = hydra.utils.instantiate(tokenizer_cfg, device=device, load_diffusion=True) | ||
|
||
transform_cfg_path = 'configs/transform/clip_transform.yaml' | ||
transform_cfg = OmegaConf.load(transform_cfg_path) | ||
transform = hydra.utils.instantiate(transform_cfg) | ||
|
||
model_cfg = OmegaConf.load('configs/llm/seed_llama_8b.yaml') | ||
model = hydra.utils.instantiate(model_cfg, torch_dtype=torch.float16) | ||
model = model.eval().to(device) | ||
|
||
generation_config = { | ||
'temperature': 1.0, | ||
'num_beams': 1, | ||
'max_new_tokens': 512, | ||
'top_p': 0.5, | ||
'do_sample': True | ||
} | ||
|
||
s_token = "USER:" | ||
e_token = "ASSISTANT:" | ||
sep = "\n" | ||
|
||
|
||
### visual question answering | ||
image_path = "images/cat.jpg" | ||
image = Image.open(image_path).convert('RGB') | ||
image_tensor = transform(image).to(device) | ||
img_ids = tokenizer.encode_image(image_torch=image_tensor) | ||
img_ids = img_ids.view(-1).cpu().numpy() | ||
img_tokens = BOI_TOKEN + ''.join([IMG_TOKEN.format(item) for item in img_ids]) + EOI_TOKEN | ||
|
||
question = "What is this animal?" | ||
|
||
input_tokens = tokenizer.bos_token + s_token + " " + img_tokens + question + sep + e_token | ||
generate_ids = generate(tokenizer, input_tokens, generation_config, model) | ||
decode_image_text(generate_ids, tokenizer) | ||
|
||
### text-to-image generation | ||
prompt = "Can you generate an image of a dog on the green grass?" | ||
input_tokens = tokenizer.bos_token + s_token + " " + prompt + sep + e_token | ||
generate_ids = generate(tokenizer, input_tokens, generation_config, model) | ||
save_path = 'dog.jpg' | ||
decode_image_text(generate_ids, tokenizer, save_path) | ||
|
||
### multimodal prompt image generation | ||
instruction = "Can you make the cat wear sunglasses?" | ||
input_tokens = tokenizer.bos_token + s_token + " " + img_tokens + instruction + sep + e_token | ||
generate_ids = generate(tokenizer, input_tokens, generation_config, model) | ||
save_path = 'cat_sunglasses.jpg' | ||
decode_image_text(generate_ids, tokenizer, save_path) |