We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
you only change the align.py def align_fp(boundary, boxes, types, edges, image, threshold, dtype=int): """ Python 实现的 align_fp 函数,移除对 MATLAB 的依赖。
参数: boundary: 房间边界的坐标。 boxes: 房间的边界框。 types: 房间的类型。 edges: 房间之间的连接关系。 image: 输入图像数据(如果有)。 threshold: 阈值,用于对齐逻辑。 dtype: 数据类型。 返回: boxes_aligned: 对齐后的边界框。 order: 对齐后的顺序。 room_boundaries: 房间边界的多边形表示。 """ # 转换为 NumPy 数组 boundary = np.array(boundary, dtype=dtype) boxes = np.array(boxes, dtype=dtype) types = np.array(types, dtype=dtype) edges = np.array(edges, dtype=dtype) image = np.array(image, dtype=dtype) # 示例对齐逻辑(根据实际需求替换) # 假设对齐逻辑是根据 threshold 调整 boxes 的大小和位置 boxes_aligned = boxes.copy() for i in range(len(boxes)): boxes_aligned[i] = boxes[i] + threshold # 简单示例逻辑:增加阈值 # 示例顺序逻辑(根据房间类型排序) order = np.argsort(types) # 根据房间类型排序 # 示例房间边界逻辑(简单模拟边界处理) room_boundaries = [boundary + np.random.rand(*boundary.shape) * 0.1 for _ in range(len(boxes))] return boxes_aligned, order, room_boundaries
def align_fp_gt(boundary, boxes, types, edges, dtype=int): """ 对齐 Ground Truth (GT) 数据。 """ GT_THRESHOLD = 6 PRED_ThRESHOLD = 12 REFINE_ThRESHOLD = 18 return align_fp(boundary, boxes, types, edges, [], GT_THRESHOLD, dtype)
def align_fp_gt2(boundary, boxes, types, edges, dtype=int): """ 对齐 Ground Truth (GT) 数据的另一种实现。 """ GT_THRESHOLD = 6 PRED_ThRESHOLD = 12 REFINE_ThRESHOLD = 18 return align_fp(boundary, boxes, types, edges, [], GT_THRESHOLD, dtype)
def align_fp_coarse(boundary, boxes, types, edges, dtype=int): """ 对齐预测数据 (Coarse Alignment)。 """ GT_THRESHOLD = 6 PRED_ThRESHOLD = 12 REFINE_THRESHOLD = 18 return align_fp(boundary, boxes, types, edges, [], PRED_THRESHOLD, dtype)
def align_fp_fine(boundary, boxes, types, edges, image, dtype=int): """ 对齐精细预测数据 (Fine Alignment)。 """ GT_THRESHOLD = 6 PRED_ThRESHOLD = 12 REFINE_THRESHOLD = 18 return align_fp(boundary, boxes, types, edges, image, REFINE_THRESHOLD, dtype)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
you only change the align.py
def align_fp(boundary, boxes, types, edges, image, threshold, dtype=int):
"""
Python 实现的 align_fp 函数,移除对 MATLAB 的依赖。
def align_fp_gt(boundary, boxes, types, edges, dtype=int):
"""
对齐 Ground Truth (GT) 数据。
"""
GT_THRESHOLD = 6
PRED_ThRESHOLD = 12
REFINE_ThRESHOLD = 18
return align_fp(boundary, boxes, types, edges, [], GT_THRESHOLD, dtype)
def align_fp_gt2(boundary, boxes, types, edges, dtype=int):
"""
对齐 Ground Truth (GT) 数据的另一种实现。
"""
GT_THRESHOLD = 6
PRED_ThRESHOLD = 12
REFINE_ThRESHOLD = 18
return align_fp(boundary, boxes, types, edges, [], GT_THRESHOLD, dtype)
def align_fp_coarse(boundary, boxes, types, edges, dtype=int):
"""
对齐预测数据 (Coarse Alignment)。
"""
GT_THRESHOLD = 6
PRED_ThRESHOLD = 12
REFINE_THRESHOLD = 18
return align_fp(boundary, boxes, types, edges, [], PRED_THRESHOLD, dtype)
def align_fp_fine(boundary, boxes, types, edges, image, dtype=int):
"""
对齐精细预测数据 (Fine Alignment)。
"""
GT_THRESHOLD = 6
PRED_ThRESHOLD = 12
REFINE_THRESHOLD = 18
return align_fp(boundary, boxes, types, edges, image, REFINE_THRESHOLD, dtype)
The text was updated successfully, but these errors were encountered: