Skip to content

Latest commit

 

History

History
48 lines (40 loc) · 1.82 KB

README.md

File metadata and controls

48 lines (40 loc) · 1.82 KB

This example includes the implementations of the following reinforcement learning algorithms:

Download loggings for reproducibility

Because the loggings and checkpoint files are very large, putting them in the repo directly leads to inconveniently slow cloning, so we host the logging files in Dropbox.

  • Download the file
  • Put all_logs.tar.gz under the directory lagom/baselines
  • Run python unzip_logs.py, this will automatically exact all logs folders under each algorithm folder.

Benchmarks

ES

Model-free RL

FAQ:

  • How to train with dm_control environments?
    • Modify experiment.py: use dm2gym wrapper, e.g.
    from gym.wrappers import FlattenDictWrapper
    from dm_control import suite
    from dm2gym import DMControlEnv
    
    config = Config(
        ...
        'env.id': Grid([('cheetah', 'run'), ('hopper', 'hop'), ('walker', 'run'), ('fish', 'upright')]),
        ...
        )
    
    def make_env(config, seed):
        domain_name, task_name = config['env.id']
        env = suite.load(domain_name, task_name, environment_kwargs=dict(flat_observation=True))
        env = DMControlEnv(env)
        env = FlattenDictWrapper(env, ['observations'])
        ...